Innovating Works

ChemForce

Financiado
Chemistry under Force
During the last three decades, physicists and biophysicists have largely exploited single-molecule force spectroscopy (SMFS) to advance many fields of physics, nanotechnology, and biology. The ability to probe one molecule at a ti... During the last three decades, physicists and biophysicists have largely exploited single-molecule force spectroscopy (SMFS) to advance many fields of physics, nanotechnology, and biology. The ability to probe one molecule at a time allows us to ask and answer questions that are impossible, or extremely difficult, to approach by ensemble techniques. Chemists did not fall into steps behind physicists and biologists and have benefited little from the advent of SMFS. The mechanics of bonds, which is still in its infancy, could largely benefit from SMFS. A big question like how forces and chemistry affect each other? merits special attention. Major questions, especially concerning the mechanical reversibility of bonds and bond lifetime under tension, could be elucidated. Over the last years, my group has acquired the needed expertise and has developed a range of pioneering SMFS approaches that now allow us to tackle this big question requiring a considerable joint effort between synthetic chemists, chemical physicists and engineers. The extreme difficulty to probe bond reformation after its rupture has been a major failure of SMFS for the last 25 years. We propose here to solve this problem and adapt SMFS to obtain a detailed picture of the mechanics and reversibility of bonds. We will design, synthesize and probe a series of supramolecular and (dynamic) covalent tethered bonds in various geometries and chemical environments. The tethered structure will ensure that the partners of the bond stay in close proximity after being broken open, leaving the possibility of rebinding. This will offer remarkable opportunities to investigate in detail how mechanical forces and proximity can trigger chemical reactions. If we wish to gain a deeper understanding of how forces and chemistry affect each other and open new possibilities for chemical synthesis and materials science, the development of SMFS adapted to detailed chemistry investigations remains a frontier to be conquered. ver más
31/12/2027
2M€
Duración del proyecto: 62 meses Fecha Inicio: 2022-10-28
Fecha Fin: 2027-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-10-28
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2021-ADG: ERC ADVANCED GRANTS
Cerrada hace 3 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITE DE LIEGE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5