Celluloepidemiology a novel paradigm for modeling T cell responses on a populat...
Celluloepidemiology a novel paradigm for modeling T cell responses on a population level.
As a paediatrician who specialized in immunology and as a physicist who specialized in mathematical modeling of infectious diseases, I want to introduce with this project a paradigm shift in infectious disease epidemiology through...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CELLULO-EPI
Duración del proyecto: 60 meses
Fecha Inicio: 2020-02-12
Fecha Fin: 2025-02-28
Líder del proyecto
UNIVERSITEIT ANTWERPEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
As a paediatrician who specialized in immunology and as a physicist who specialized in mathematical modeling of infectious diseases, I want to introduce with this project a paradigm shift in infectious disease epidemiology through the concept of celluloepidemiology.
Celluloepidemiology is a term I invented to describe my proposed interdisciplinary approach combining unique cellular immune responses against pathogens on a population level with mathematical modeling, thereby generating unique and otherwise not obtainable multidimensional T-cell profiles.
CELLULO-EPI will develop and use such a highly innovative model to simulate how T-cells against pathogens evolve in a synthetic population as a function of age, gender, time since infection and other relevant variables. This model will be parameterized and fitted by cross sectional T-cell data against a wide set of pathogens from 500 individuals (sampled again after 1 year), unique data from individuals with known first infections with dengue and measles and longitudinal data from individuals re-exposed to chickenpox and parvovirus B19.
The insights of CELLULO-EPI will be pivotal for public health. One important example: Varicella-zoster virus (VZV) causes chickenpox but also shingles after VZV reactivation. Vaccination can prevent chickenpox, but the predicted increase in shingles incidence has blocked chickenpox vaccination in many EU-countries. Indeed, re-exposure to chickenpox is hypothesized to protect against shingles through boosting of T-cells. Unfortunately, none of the available epidemiological or immunological tools allow for adequate validation of the boosting hypothesis. However, CELLULO-EPI will be able to solve this persisting VZV vaccination dilemma. Furthermore, CELLULO-EPI will also redefine infectious disease epidemiology, for example by allowing us to back-calculate the time since last exposure.
I am convinced CELLULO-EPI can revolutionize infectious disease epidemiology and public health.