Cavity quantum electrodynamics control of magnetic phases in twisted van der Waa...
Cavity quantum electrodynamics control of magnetic phases in twisted van der Waals heterostructures
To further increase performance and reduce energy consumption in technological devices, a new paradigm is needed exploiting quantum mechanical phenomena. An attractive route to enter this paradigm is by interfacing light and magne...
To further increase performance and reduce energy consumption in technological devices, a new paradigm is needed exploiting quantum mechanical phenomena. An attractive route to enter this paradigm is by interfacing light and magnetic excitations in new optomagnetic devices, which ensures processing frequencies comparable with electronics and hold great promise for future memory, spintronics and quantum computing devices. This, however, requires a deeper understanding of strongly coupled light-matter systems and the interplay between magnetic, electronic, photonic and lattice excitations. A promising platform to explore exotic magnetic phenomena is magnetic van der Waals (vdW) materials, since the competition of anisotropy, quantum fluctuations and spin-orbit coupling make these materials prime candidates to host such states and susceptible to material engineering techniques. This can be exploited in cavity quantum electrodynamics (c-QED) and Moiré engineering to control the magnetic state. By combining c-QED with Moiré engineering, the goal of CavityMag is to construct schemes to control the magnetic state of vdW materials and to induce exotic magnetic phases. This will be achieved by developing state-of-the-art computational tools based on quantum electrodynamical density functional theory (QED-DFT) in combination with effective spin-photon models. This computational framework will be used to perform a systematic study of light-induced magnetic phases in twisted vdW materials, to gain a deeper understanding of how microscopic magnetic interactions can be modified, and to establish concrete protocols to control the macroscopic magnetic state. It will also be used to guide experimental efforts by identifying candidate materials and parameter regimes likely to host exotic states of great promise for the construction of new high performance and energy efficient technological devices.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.