Unravelling the intertwined correlated states of matter in moiré superlattices
The recent observation of many quantum correlated phases, including superconductivity and correlated insulating states, in twisted bilayers of 2D materials, has sparked tremendous interest and boosted intense research activity to...
ver más
Descripción del proyecto
The recent observation of many quantum correlated phases, including superconductivity and correlated insulating states, in twisted bilayers of 2D materials, has sparked tremendous interest and boosted intense research activity to understand these phases. The ability of robustly engineering quantum states of matter with few tunable experimental knobs, e.g. the twist angle between the two 2D materials, represents a major breakthrough of these so-called moiré materials, which started the new field of twistronics. In particular, moiré materials made from transition metal dichalcogenides (TMDs), have gained significant momentum as a novel and robust platform for simulating quantum phases of matter on emergent 2D lattices.
While it is widely accepted that these quantum phases are driven by enhanced electron-electron interactions in moiré materials, the quantum nature of many correlated phases is still poorly understood. Theoretical and computational first principles methods can be extremely powerful in helping to unravel the experimental signatures of the different quantum phases and also predict new ones. However, standard methods, like density functional theory, are computationally too costly for moiré systems (for which typical unit cells contain thousands of atoms) and generally unable to tackle the challenges posed by strongly correlated materials. A new approach is therefore required.
In this fellowship, I will develop an efficient multi-scale framework, involving different theoretical and computational methods, for studying quantum phases of TMDs moiré superlattices. Specifically, I will combine classical force field calculations, machine-learning based tight-binding methods and many-body methods to overcome the limitations of conventional first-principles approaches while maintaining their predictive power.
This framework will allow us to shed light on the nature of the quantum phases hosted in moiré materials, which can be harnessed in future technologies.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.