The Bergamot project will add and improve client-side machine translation in a web browser. Unlike current cloud-based options, running directly on users' machines empowers citizens to preserve their privacy and increases the upt...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ABU-MATRAN
Automatic building of Machine Translation
1M€
Cerrado
MMT
MMT will deliver a language independent commercial online tr...
4M€
Cerrado
EU-BRIDGE
Bridges Across the Language Divide
10M€
Cerrado
MosesCore
Moses Open Source Evaluation and Support Co ordination for O...
1M€
Cerrado
FFI2013-46041-R
PROYECTOS DE TRADUCCION CON TRADUCCION AUTOMATICA ESTADISTIC...
48K€
Cerrado
LT_Observatory
LT OBSERVATORY OBSERVATORY FOR LR and MT in EUROPE
983K€
Cerrado
Información proyecto Bergamot
Duración del proyecto: 43 meses
Fecha Inicio: 2018-11-12
Fecha Fin: 2022-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Bergamot project will add and improve client-side machine translation in a web browser. Unlike current cloud-based options, running directly on users' machines empowers citizens to preserve their privacy and increases the uptake of language technologies in Europe in various sectors that require confidentiality. Free software integrated with an open-source web browser, such as Mozilla Firefox, will enable bottom-up adoption by non-experts, resulting in cost savings for private and public sector users who would otherwise procure translation or operate monolingually.
To understand and support non-expert users, our user experience work package researches their needs and creates the user interface. Rather than simply translating text, this interface will expose improved quality estimates, addressing the rising public debate on algorithmic trust. Building on quality estimation research, we will enable users to confidently generate text in a language they do not speak, enabling cross-lingual online form filling. To improve quality overall, dynamic domain adaptation research addresses the peculiar writing style of a website or user by adapting translation on the fly using local information too private to upload to the cloud. These applications require adaptation and inference to run on desktop hardware with compact model downloads, which we address with neural network efficiency research. Our combined research on user experience, domain adaptation, quality estimation, outbound translation, and efficiency support a broad browser-based innovation plan.