Biomarker discovery by AI guided image based single cell isolation proteomics
Early detection of severe malignancies such as cancer is the most effective way to increase patient survival, but early diagnosis and prediction of treatment outcome critically depend on disease-specific biomarkers. However, molec...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Visual Proteomics
Duración del proyecto: 24 meses
Fecha Inicio: 2019-03-26
Fecha Fin: 2021-03-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Early detection of severe malignancies such as cancer is the most effective way to increase patient survival, but early diagnosis and prediction of treatment outcome critically depend on disease-specific biomarkers. However, molecular and cellular disease heterogeneity provide a ubiquitous and unresolved challenge to this important task, and therefore impede any attempt to develop personalized therapies. Past and current approaches provide averaged descriptions of the tumor composition and have shown very limited success to identify biomarkers. This is likely due to the failure of these methods to identify the critical disease promoting cell populations within the tumor. Therefore, I will develop a new workflow that exploits automated microscopic image acquisition and artificial-intelligence-guided image analysis to identify specific cell populations in patient samples. These cells are then individually isolated by laser microdissection, followed by high-sensitivity proteome profiling, to identify proteins that define the identity of individual cells in a given tumor and thus represent the most promising biomarker candidates. To apply my approach to wide array of diseases, I will optimize it for archival biobank tissues (FFPE), the most common form of solid tissues in pathology. Applied to FFPE samples, my approach will allow me to perform both prospective and retrospective studies, correlate disease state and tissue morphology to protein expression and clinical outcome, and map tumor heterogeneity with unprecedented resolution. To achieve this, I will receive world-class training in cutting-edge microscopy and machine learning techniques in my host laboratory, which I complement with my expertise in high-sensitivity proteomics. My new pipeline will offer a highly fertile ground for new biomarker discoveries, inspire and stimulate collaborative research within and outside the host institute and allow me to establish a highly competitive niche for my future career.