Deep Spatial Proteomics: connecting cellular neighbourhoods to functional states
Health and disease states result from dynamic cellular interactions within spatially defined regions in tissues and organs. In diseases such as cancer, these interactions are often disturbed, but their systematic analysis with res...
Health and disease states result from dynamic cellular interactions within spatially defined regions in tissues and organs. In diseases such as cancer, these interactions are often disturbed, but their systematic analysis with respect to their impact on the proteome, a close proxy for cellular function, has so far remained elusive. To overcome this major bottleneck in molecular biosciences, I propose to develop and apply Deep Spatial Proteomics (DSP), a multimodal strategy, which for the first time will link distinct cellular neighbourhoods within biological samples to functional proteome states. DSP will combine multiplex immunofluorescence imaging and machine-learning driven cellular neighbourhood profiling with single-cell sensitivity mass spectrometry (MS) based proteomics. Our preliminary data support the feasibility and strong potential of DSP to uncover novel disease mechanisms, drug targets and predictive biomarkers. After development and rigorous benchmarking, we will apply DSP to an already available retrospective cohort of advanced head and neck squamous cell carcinoma, where response rates for anti-cancer immunotherapy are only below twenty percent. The correlation of cell states and spatial neighbourhoods with clinical outcomes will allow us to identify cell communities of highest likelihood to be critical for treatment response and hence patient survival. Through their functional characterisation by deep MS based proteomics, we will not only gain unique biological insights into immunotherapy resistance and potential therapeutic targets, but also identify predictive candidate markers to improve patient stratification. This new concept will have strong implications for basic and translational research, far beyond the study of cancer immunotherapy. DSP could pave the way for a plethora of spatial proteomics applications with countless opportunities for discovery-driven biomedical research.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.