This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit modularity of q-hypergeometric series. Modular forms are functio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AQSER
Líder del proyecto
UNIVERSITAT ZU KOLN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal aims to unravel mysteries at the frontier of number theory and other areas of mathematics and physics. The main focus will be to understand and exploit modularity of q-hypergeometric series. Modular forms are functions on the complex plane that are inordinately symmetric. (Mazur) The motivation comes from the wide-reaching applications of modularity in combinatorics, percolation, Lie theory, and physics (black holes).
The interplay between automorphic forms, q-series, and other areas of mathematics and physics is often two-sided. On the one hand, the other areas provide interesting examples of automorphic objects and predict their behavior. Sometimes these even motivate new classes of automorphic objects which have not been previously studied. On the other hand, knowing that certain generating functions are modular gives one access to deep theoretical tools to prove results in other areas. Mathematics is a language, and we need that language to understand the physics of our universe.(Ooguri) Understanding this interplay has attracted attention of researchers from a variety of areas. However, proofs of modularity of q-hypergeometric series currently fall far short of a comprehensive theory to describe the interplay between them and automorphic forms. A recent conjecture of W. Nahm relates the modularity of such series to K-theory. In this proposal I aim to fill this gap and provide a better understanding of this interplay by building a general structural framework enveloping these q-series. For this I will employ new kinds of automorphic objects and embed the functions of interest into bigger families
A successful outcome of the proposed research will open further horizons and also answer open questions, even those in other areas which were not addressed in this proposal; for example the new theory could be applied to better understand Donaldson invariants.