Artificial Intelligence for Traffic Safety between Vehicles and Vulnerable Road...
Artificial Intelligence for Traffic Safety between Vehicles and Vulnerable Road Users
Traffic safety is the fundamental criterion for vehicular environments and many artificial intelligence-based systems like self-driving cars. There are places, e.g., intersections and shared spaces, in the urban environment with h...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
IVORY
AI for Vision Zero in Road Safety
3M€
Cerrado
TED2021-132802B-I00
CONDUCCION AUTONOMA BASADA EN LA CLONACION DEL COMPORTAMIENT...
223K€
Cerrado
PID2021-125051OB-I00
RECOLECCION DE DATOS VISUALES: PERMITIENDO LA VISION POR COM...
117K€
Cerrado
PID2021-123514NB-I00
INTELIGENCIA ARTIFICIAL Y PREVENCION DE RIESGOS LABORALES: R...
24K€
Cerrado
TIN2009-14538-C02-01
DESARROLLO DE UN SISTEMA INTELIGENTE PARA DETECCION Y CONTRO...
179K€
Cerrado
Información proyecto VeVuSafety
Duración del proyecto: 27 meses
Fecha Inicio: 2022-06-22
Fecha Fin: 2024-09-30
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
188K€
Descripción del proyecto
Traffic safety is the fundamental criterion for vehicular environments and many artificial intelligence-based systems like self-driving cars. There are places, e.g., intersections and shared spaces, in the urban environment with high risks where vehicles and vulnerable road users (VRUs) such as pedestrians and cyclists directly interact with each other. By advancing starte-of-the-art artificial intelligence methodologies, this project VeVuSafety aims to build a privacy-aware deep learning framework to learn road users’ behaviour in various mixed traffic situations for the safety between vehicles and VRUs. VeVuSafety proposes a 3D environment model based on 3D point cloud for privacy protection — private information like license plates and face is anonymized. Then, within this environment model, an end-to-end deep learning framework using camera data will be built for multimodal trajectory prediction, anomaly detection, and potential risk classification based on deep generative models such as Variational Auto-Encoder. Additionally, an active privacy mechanism will also be adopted by application of the differential privacy mechanism to help the deep learning models prevent model-inversion attack. Moreover, the framework’s generalizability will be investigated by exploring the Normalizing Flows approach for domain adaption. The framework’s performance will be validated at different intersections and shared spaces using real-world traffic data. Besides road user safety and privacy, VeVuSafety can help traffic engineers and city planners to better estimate the design of traffic facilities in order to achieve a road-user-friendly urban traffic environment. Furthermore, the success of VeVuSafety will enhance the fellow’s scientific knowledge and project management skills to become an artificial intelligence expert for traffic safety and Intelligent Transportation Systems.