Artificial Intelligence for Traffic Safety between Vehicles and Vulnerable Road...
Traffic safety is the fundamental criterion for vehicular environments and many artificial intelligence-based systems like self-driving cars. There are places, e.g., intersections and shared spaces, in the urban environment with h...
Traffic safety is the fundamental criterion for vehicular environments and many artificial intelligence-based systems like self-driving cars. There are places, e.g., intersections and shared spaces, in the urban environment with high risks where vehicles and vulnerable road users (VRUs) such as pedestrians and cyclists directly interact with each other. By advancing starte-of-the-art artificial intelligence methodologies, this project VeVuSafety aims to build a privacy-aware deep learning framework to learn road users’ behaviour in various mixed traffic situations for the safety between vehicles and VRUs. VeVuSafety proposes a 3D environment model based on 3D point cloud for privacy protection — private information like license plates and face is anonymized. Then, within this environment model, an end-to-end deep learning framework using camera data will be built for multimodal trajectory prediction, anomaly detection, and potential risk classification based on deep generative models such as Variational Auto-Encoder. Additionally, an active privacy mechanism will also be adopted by application of the differential privacy mechanism to help the deep learning models prevent model-inversion attack. Moreover, the framework’s generalizability will be investigated by exploring the Normalizing Flows approach for domain adaption. The framework’s performance will be validated at different intersections and shared spaces using real-world traffic data. Besides road user safety and privacy, VeVuSafety can help traffic engineers and city planners to better estimate the design of traffic facilities in order to achieve a road-user-friendly urban traffic environment. Furthermore, the success of VeVuSafety will enhance the fellow’s scientific knowledge and project management skills to become an artificial intelligence expert for traffic safety and Intelligent Transportation Systems.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.