Artificial Intelligence controller able to manage Air traffic Control (ATC) and...
Artificial Intelligence controller able to manage Air traffic Control (ATC) and Air Traffic Flow Management (ATFM) within a single framework
Air Traffic Flow Management (ATFM) is the problem of adjusting the traffic demand in each traffic volume using ATFM measures so that aircraft can be safely separated during the subsequent Air Traffic Control (ATC) process. On the...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TAPAS
Towards an Automated and exPlainable ATM System
997K€
Cerrado
ARTIMATION
TRANSPARENT ARTIFICIAL INTELLIGENCE AND AUTOMATION TO AIR TR...
999K€
Cerrado
HAAWAII
Highly Automated Air Traffic Controller Workstations with Ar...
2M€
Cerrado
FJCI-2017-32420
Soft Computing, Complex Networks and Artificial Intelligence
50K€
Cerrado
AHPACS
Abstraction Heuristics for Planning and Combinatorial Search
241K€
Cerrado
Xepholution
Artificial General Intelligence software enabling workforce...
71K€
Cerrado
Información proyecto HYPERSOLVER
Duración del proyecto: 29 meses
Fecha Inicio: 2023-06-07
Fecha Fin: 2025-11-30
Líder del proyecto
NEOMETSYS
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Air Traffic Flow Management (ATFM) is the problem of adjusting the traffic demand in each traffic volume using ATFM measures so that aircraft can be safely separated during the subsequent Air Traffic Control (ATC) process. On the other hand, ATC officers (ATCOs) give different aircraft heading, speed, and flight level change instructions to separate them in flight. Both ATFM and ATC problems have been subject of research during decades, however, all previous works addressed the ATFM and ATC problems independently. The project aims to develop an HyperSolver based on advanced Artificial Intelligent Reinforcement Learning method with continuous reassessment and dynamic updates, i.e. an holistic solver from end-to-end, covering the whole process to manage, density of aircraft, complexity of trajectories, interactions (potential conflict in Dynamic Capacity Balancing timeframe) of trajectories, conflict of trajectories at medium-term and conflict of trajectories at short-term.