Motivated by our recent progress in feedback information theory and its deep relations to stochastic dynamical systems, and inspired by natural phenomena such as bio-molecular interactions and human conversation, this research wil...
Motivated by our recent progress in feedback information theory and its deep relations to stochastic dynamical systems, and inspired by natural phenomena such as bio-molecular interactions and human conversation, this research will explore the fundamental limits of information transfer via simple interaction. In the standard information theoretic framework, the problem of reliable communications is typically studied in an asymptotic unidirectional regime, where optimal performance is attained via complex codes employed over increasingly long time epochs. Here, we will investigate a markedly different paradigm where communicating parties are restricted to use simple finite-state rules to act and react on the fly. We will consider a broad spectrum of models ranging from feedback communications and two-way channels to multiuser setups and large homogeneous networks, and study measures of information transfer and dissipation, their relations to dynamical system contraction factors, and the fundamental tradeoffs between complexity and performance. While prominently theoretic, our investigation is expected to admit important practical applications and a cross-disciplinary impact. In communications, and especially in resource-limited systems such as wireless sensor networks where battery-life is a bottleneck, a breakthrough in the understanding of optimal interaction can lead to a paradigm shift in system design, yielding simpler, cheaper, more robust solutions. In Finance, where market behavior is a cumulative effect of local actions taken by individuals based on limited noisy observations, quantifying interaction and its relation to information propagation can enhance our ability to forecast and explain macro level phenomena. Finally, an information theoretic characterization of interaction in large networks can shed light on the underlying mechanisms governing various biological systems that are empirically amenable to cellular automata modeling.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.