Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2009-08821
ESTRUCTURAS COHERENTES Y TURBULENCIA EN DOMINIOS SIMPLES
119K€
Cerrado
MTM2009-07719
MODELADO NUMERICO DE LA TURBULENCIA EN FLUJOS HIDRODINAMICOS...
134K€
Cerrado
ADDECCO
Adaptive Schemes for Deterministic and Stochastic Flow Probl...
1M€
Cerrado
T2T-VHF
Transition to Turbulence of Volumetrically Heated Flows
273K€
Cerrado
FIS2013-40880-P
COMPLEJIDAD Y GENESIS DE LA TURBULENCIA EN FLUJOS FUNDAMENTA...
61K€
Cerrado
MTM2013-42538-P
APROXIMACION NUMERICA DE ECUACIONES DE CONVECCION-REACCION-D...
24K€
Cerrado
Información proyecto AROMA-CFD
Duración del proyecto: 74 meses
Fecha Inicio: 2016-02-24
Fecha Fin: 2022-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.