Actomyosin driven force-generation at the egg surface during fertilization
The fusion of two specialized gametes represents the starting point of life in sexually reproductive organisms. Despite this fundamental role in the creation of life, the molecular and biophysical mechanisms underlying this proces...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ZygoCiliaAct
A Newly Identified Cilium in Meiosis - Deciphering the Princ...
2M€
Cerrado
BFU2010-16546
MECANISMOS CELULARES DE CONSTRICCION DE TEJIDOS DURANTE LA M...
169K€
Cerrado
PID2021-123091NB-C22
MAPEADO DE PROTEINAS DE UNION ESPERMATICAS Y CARACTERIZACION...
143K€
Cerrado
BFU2008-03650
ESTUDIO DE LOS MECANISMOS MOLECULARES Y GENETICOS DEL DESARR...
109K€
Cerrado
BFU2008-03650
ESTUDIO DE LOS MECANISMOS MOLECULARES Y GENETICOS DEL DESARR...
109K€
Cerrado
BFU2011-23193
MECANISMO Y REGULACION DE LA CITOQUINESIS EN LA LEVADURA SAC...
191K€
Cerrado
Información proyecto Egg-Cortex
Duración del proyecto: 27 meses
Fecha Inicio: 2022-10-28
Fecha Fin: 2025-01-31
Descripción del proyecto
The fusion of two specialized gametes represents the starting point of life in sexually reproductive organisms. Despite this fundamental role in the creation of life, the molecular and biophysical mechanisms underlying this process remain largely elusive. It is evident that the dynamic modulation of the egg actomyosin cortex plays a central role during different steps of fertilization including cortical granule exocytosis, Ca2+ signaling and sperm uptake. How this high plasticity of the actin cortex is regulated during fertilization has not been studied in detail. In the past, research of this dynamic process has been limited by live-cell microscopy techniques lacking the needed spatiotemporal resolution. Gamete interaction is not only a very fast process; in mammals, it also occurs synchronously with gamete activation. To overcome these limitations, we propose utilizing eggs isolated from zebrafish that can be activated independently of interaction with sperm. Specifically, we will comparatively characterize the dynamic egg actomyosin cortex properties during fertilization using advanced single-molecule imaging techniques and biophysical tools like optical tweezers. We will specifically address whether the egg actin cortex has mechanosensitive properties that might facilitate gamete fusion, as has been shown for other cell-cell fusion events. It is our goal to identify the basic molecular and biophysical mechanisms underlying fertilization, and the comprehensive quantitative study of actin structures within the egg cortex will establish an essential step in addressing this question.