Descripción del proyecto
Enzymes that produce and degrade oligosaccharides and glycoconjugates are present in all kingdoms of life. The ability to visualize, modulate and understand these carbohydrate-active enzymes (CAZymes) therefore offers great potential for human health and sustainable industries. To provide a disruptive shift in our understanding, we adopt in this proposal a multidisciplinary approach combining structural biology, enzymology, computational chemistry, organic synthesis, and chemical biology, with major leaders in these fields part of our CARBOCENTRE Synergy Team. Three fundamental strands will specifically target and ‘capture’ glycoprocessing enzyme active sites. Biochemical and 3-D structural analyses will inform computational dissection of the reaction coordinate of key enzymes for human health and biotechnology processes. Building on our founding work on retaining glycosidases we will also target inverting glycosidases and glycosyltransferases. Following fundamental analyses, our probes will feed research in two major application domains of human health and biotechnology: 1. To provide visualization, diagnosis, and inhibitor assays and clinical lead compounds for enzymes in cancers and genetic diseases (lysosomal storage disorders). 2. To explore the natural diversity of CAZymes and to discover, quantify and optimize new enzymes for food and household applications and for biomass conversion to biofuels. In an iterative cycle, structural biology and enzymology (Davies, York), will inform, through structures of enzymes and enzyme-inhibitor complexes, theoretical and computational chemistry (Rovira, Barcelona), which in turn will guide the design and synthesis (Overkleeft, Leiden), of inhibitors and activity-based probes for ensuing chemical biology studies in the domains of biomedicine and biotechnology.