A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Rega...
A Direct Sensorimotor Connection with the Spared Neural Code of Movement to Regain Motor Function
Many individuals suffer partial or complete muscle paralysis with no available cures. Even though neural interfaces have the potential to restore motor function with assistive systems, their use is still very limited. Even in the...
Many individuals suffer partial or complete muscle paralysis with no available cures. Even though neural interfaces have the potential to restore motor function with assistive systems, their use is still very limited. Even in the case of state-of-the-art invasive neural implants, the control of the movements of the paralyzed limbs is highly unsatisfactory. These neural interfaces suffer high surgical risks, poor control of the activity of spinal motor neurons, and inaccurate mapping of the attempted movements. Spinal motor neurons are the last cells of the nervous system that convert motor commands into movement and their activity can be accessed with minimally invasive methods. In most neural lesions, such as spinal cord injury and stroke, there are functionally active spinal motor neurons projecting to paralyzed muscles that are modulated by brain input. In this project, I propose a bidirectional interface that is driven by the real-time identification of efferent spinal motor neuron activity. We will develop novel sensing, decoding, and feedback methods with precise cellular resolution. This neural interface will map, engage, and augment the spared output of the spinal cord through new deep learning methods and hundreds of fine-tuned electromyographic sensors recording action potentials of individual motor units for the muscles controlling the hand. The output of this interface will enable highly accurate temporal associations between efferent motor neuron activity and sensorimotor feedback by delivering multiple visual and somatosensory inputs. This bidirectional neural interface will entrain and monitor the spared neural pathways at the direct cellular level with the goal of transforming and augmenting the activity of the spared motor neurons into highly functional motor dimensions. Using these new technologies, we aim to answer open questions in movement neuroscience and spinal cord injury.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.