Innovating Works
FCH-04-4-2017
FCH-04-4-2017: PNR for a safe use of liquid hydrogen
Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get reworked. Rather it addresses all safety related standards and regulations (ATEX directive, etc…) requiring a minimum safety performance of the respective technology (refuelling, transport, etc). However, there are a few international standards already dealing with LH2 like ISO 13984:1999 Liquid hydrogen - Land vehicle fuelling system interface, ISO 13985:2006 Liquid hydrogen - Land vehicle fuel tanks, the ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems, or ISO Standard 21012:2006 Cryogenic vessels - Hoses (Applicable to fuel storage system design) which should be revised on the basis of the outcome of the project. As EU regulations are built on or tend to refer to international standards (“modern approach”) there are actually no LH2 specific regulations at all.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 20-04-2017.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get reworked. Rather it addresses all safety related standards and regulations (ATEX directive, etc…) requiring a minimum safety performance of the respective technology (refuelling, transport, etc). However, there are a few international standards already dealing with LH2 like ISO 13984:1999 Liquid hydrogen - Land vehicle fuelling system interface, ISO 13985:2006 Liquid hydrogen - Land vehicle fuel tanks, the ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems, or ISO Standard 21012:2006 Cryogenic vessels - Hoses (Applicable to fuel storage system design) which should be revised on the basis of the outcome of the project. As EU regulations are built on or tend to refer to international standards (“modern approach”) there are actually no LH2 specific regulations at all.

For scaling up the hydrogen supply infrastructure the transport of liquefied hydrogen is the most effective option due to the energy density. Especially for the transport sector with the planned large bus fleets, the emerging hydrogen fuelled train... ver más

Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get reworked. Rather it addresses all safety related standards and regulations (ATEX directive, etc…) requiring a minimum safety performance of the respective technology (refuelling, transport, etc). However, there are a few international standards already dealing with LH2 like ISO 13984:1999 Liquid hydrogen - Land vehicle fuelling system interface, ISO 13985:2006 Liquid hydrogen - Land vehicle fuel tanks, the ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems, or ISO Standard 21012:2006 Cryogenic vessels - Hoses (Applicable to fuel storage system design) which should be revised on the basis of the outcome of the project. As EU regulations are built on or tend to refer to international standards (“modern approach”) there are actually no LH2 specific regulations at all.

For scaling up the hydrogen supply infrastructure the transport of liquefied hydrogen is the most effective option due to the energy density. Especially for the transport sector with the planned large bus fleets, the emerging hydrogen fuelled train, boat and truck projects and even for the pre-cooled 70 MPa car refuelling liquid hydrogen (LH2) offers sufficient densities and gains in efficiency over gaseous transport, storage and supply. However, LH2 implies specific hazards and risks, which are very different from those associated with the relatively well-known compressed gaseous hydrogen. Although these specific issues are usually well reflected and managed in large-scale industry and aerospace applications of LH2, experience with LH2 in a distributed energy system is lacking. Transport and storage of LH2 in urban areas and the daily use by the untrained general public will require higher levels of safety provisions accounting for the very special properties. The quite different operational conditions compared with the industrial environment and therefore also different potential accident scenarios will put an emphasis on specific related phenomena which are still not well understood. Specific recommendations and harmonised performance based international standards are lacking for similar reasons. However, for a safe scale-up of the described promising hydrogen solutions science based and validated tools for hydrogen safety engineering and risk informed, performance based, international standards specific for LH2 technologies are imperative.

So the potential for increased handling and distribution of LH2 in the public highlights the need to address unanswered questions related to these prototypical accident scenarios via pre-normative research, thorough laboratory scale experimental and theoretical investigations. In particular, appropriate models for the flashing multiphase, multicomponent release phenomena, cryogenic plumes and jets, the potential for flame acceleration and deflagration-detonation-transition in these multiphase mixtures, have to be developed on a new experimental basis. The suitability of conventional mitigation techniques needs to be checked carefully and partially overly conservative safety distance requirements have to be revised on the basis of an improved understanding of the physics and with the help of the new models. The intrinsic safety advantages of LH2 over compressed hydrogen offer indeed a high potential for safer, more economic innovative solutions. However, this potential might be used only if the required knowledge base is provided.


Scope:The scope of this topic encompasses pre-normative research on the associated risks related to the accidental behaviour of LH2 and finally the derivation of suitable engineering correlations and enhanced recommendations for safe design and operations of LH2 technologies.

In a more detailed view, the envisaged project shall develop a suitable detailed experimental program, which shall be derived from internationally agreed priorities. The preliminary list of critical phenomena presented in the specific challenge paragraph above has to be revised to comply with those topics which receive highest ranks from all stakeholders, mainly research and industry. Thus the generated experimental program and the accompanying analytical and numerical studies will improve the understanding of the most relevant safety related issues of distributed use of LH2 in the most efficient way.

The generated experimental results shall be extensively documented, published and translated into easily applied, but sufficiently conservative criteria or engineering correlations, directly applicable in the design process or associated risk assessment procedures. Implementation of the criteria and correlations in an open software integration platform for risk assessment or improved design of mitigation concepts shall be envisaged. New recommendations and guidelines including appropriate safety distance correlations and advice for proper use of mitigation technologies shall be derived. Thus, the results shall support the further development of the related specific international standards via a solid extended scientific basis. A set of communication peer reviewed papers shall be prepared, suitable to internationally disseminate the findings of the project to the different stakeholders.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC), which manages the European hydrogen safety reference database, HIAD (dedicated mailbox [email protected]).

It is obvious that in particular in the field of hydrogen safety international collaboration with similar activities ongoing in IPHE countries will be an advantage and will strengthen the whole FCH community.

The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 1.5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

A maximum of 1 project may be funded under this topic.

Expected duration: 3 years


Expected Impact: Closure of knowledge gaps related to the LH2 behaviour in accidental conditions related to the new public use case Enhancement of the state-of-the-art by development, verification and validation of predictive models, analytical and numerical tools for characterization of LH2 hazards and associated risk mitigation barriers Review of existing standards against new knowledge and missing to suggest the implementation and modification of standards Provision and execution of specific experiments and tests according new phenomena concerning the physical behaviour of LH2 Providing appropriate guidelines for safe design, based on the experimental results and simulations, implementation and operations of distributed LH2 logistic systems Inclusion of the enhanced state-of-the-art, the related models and recommendations in updated or new specific, performance based, new international standards Exploiting the potential of LH2 for safer and more economic innovative hydrogen technology solutions Enabling FCH industry scaling-up attractive hydrogen technologies mainly in the transport sector
Cross-cutting Priorities:International cooperation


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get reworked. Rather it addresses all safety related standards and regulations (ATEX directive, etc…) requiring a minimum safety performance of the respective technology (refuelling, transport, etc). However, there are a few international standards already dealing with LH2 like ISO 13984:1999 Liquid hydrogen - Land vehicle fuelling system interface, ISO 13985:2006 Liquid hydrogen - Land vehicle fuel tanks, the ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems, or ISO Standard 21012:2006 Cryogenic vessels - Hoses (Applicable to fuel storage system design) which should be revised on the basis of the outcome of the project. As EU regulations are built on or tend to refer to international standards (“modern approach”) there are actually no LH2 specific regulations at all. Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get reworked. Rather it addresses all safety related standards and regulations (ATEX directive, etc…) requiring a minimum safety performance of the respective technology (refuelling, transport, etc). However, there are a few international standards already dealing with LH2 like ISO 13984:1999 Liquid hydrogen - Land vehicle fuelling system interface, ISO 13985:2006 Liquid hydrogen - Land vehicle fuel tanks, the ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems, or ISO Standard 21012:2006 Cryogenic vessels - Hoses (Applicable to fuel storage system design) which should be revised on the basis of the outcome of the project. As EU regulations are built on or tend to refer to international standards (“modern approach”) there are actually no LH2 specific regulations at all.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme. Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme.
3.2 Submission and evaluation process: Guide to the submission and evaluation process
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
Provisions, proposal templates and evaluation forms for the type(s) of action(s) under this topic:
Research and Innovation Action:
Specific provisions and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH2 JU Model Grant Agreement
Annotated Model Grant Agreement
 
         6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.
 
         7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions, and proposals must refer to measures envisaged. Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved. See Part L of the General Annexes of the General Work Programme. 
 
        8. Additional documents:
FCH2 JU 2017 Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
Horizon 2020 Regulation of Establishment
Horizon 2020 Rules for Participation
Horizon 2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2017-1 PNR for a safe use of liquid hydrogen Specific Challenge:As a prenormative project the topic addresses mainly those areas where LH2 specific standards do not exist or should get...
Sin info.
FCH-04-5-2020 Guidelines for Life Cycle Sustainability Assessment (LCSA) of fuel cell and hydrogen systems
en consorcio: Specific Challenge:The ambition of the FCH 2 JU is to develop clean, efficient and affordable solutions that fully demonstrate the potential...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-2-2020 PNR on hydrogen-based fuels solutions for passenger ships
en consorcio: Specific Challenge:In April 2018, the International Maritime Organisation, IMO adopted an initial strategy on reduction of GHG emissions fro...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-1-2020 Overcoming technical and administrative barriers to deployment of multi-fuel hydrogen refuelling stations (HRS)
en consorcio: Specific Challenge:The development of a widely available hydrogen vehicle refuelling infrastructure across EU will need hydrogen to be able...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-3-2020 Development of eco-design guidelines for FCH products
en consorcio: Specific Challenge:The path towards a well-established hydrogen economy requires the deployment of sustainable FCH systems. Moreover, such a...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-4-2020 Development and validation of existing and novel recycling technologies for key FCH products
en consorcio: Specific Challenge:Previous research initiatives, such as HyTechCycling project [89],[90] have identified the current absence of viable and...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de