Innovating Works
FCH-04-1-2017
FCH-04-1-2017: Limiting the impact of contaminants originating from the hydrogen supply chain
Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack durability and system efficiency. International standards dealing with hydrogen quality specifications have been created (ISO 14687-2:2012 and ISO 14687-3:2014) and the former is currently under revision (ISO TC 197/WG 27&28).
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 20-04-2017.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack durability and system efficiency. International standards dealing with hydrogen quality specifications have been created (ISO 14687-2:2012 and ISO 14687-3:2014) and the former is currently under revision (ISO TC 197/WG 27&28).

The contaminants included in these standards are primarily associated with hydrogen production and purification processes. European and international research efforts have been contributing to better understanding of the effects of such contaminants (e.g. CO, HCHO, HCOOH) and their maximum acceptable levels are already relatively well understood. Nevertheless, most of these investigations are conducted using individual contaminants under static operation conditions, at relatively low maximum current density (1 A cm-2), and not necessarily with MEA configurations appropriate for future automotive applications.

Furthermore, contaminants originating from hydrogen refuelling stations (HRS) may also impact the quality of hydrogen delivered to FCEVs. The effects of irreversible contaminants (su... ver más

Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack durability and system efficiency. International standards dealing with hydrogen quality specifications have been created (ISO 14687-2:2012 and ISO 14687-3:2014) and the former is currently under revision (ISO TC 197/WG 27&28).

The contaminants included in these standards are primarily associated with hydrogen production and purification processes. European and international research efforts have been contributing to better understanding of the effects of such contaminants (e.g. CO, HCHO, HCOOH) and their maximum acceptable levels are already relatively well understood. Nevertheless, most of these investigations are conducted using individual contaminants under static operation conditions, at relatively low maximum current density (1 A cm-2), and not necessarily with MEA configurations appropriate for future automotive applications.

Furthermore, contaminants originating from hydrogen refuelling stations (HRS) may also impact the quality of hydrogen delivered to FCEVs. The effects of irreversible contaminants (sulphur, halogenates such as tetrachlorohexafluorobutane, contaminants from ionic compression, etc.) as well as those arising from HRS operation and maintenance are less well known. A major issue with some of these contaminants (e.g. grease from compressors) is that relatively large amounts of contaminant can be introduced into the hydrogen due to improper maintenance procedures or component failure.


Scope:The main focus of the project should be to understand the effect of contaminants originating from the hydrogen supply chain, as specified in current standards ISO 14687-2:2012 and ISO 14687-3:2014, on fuel cell performance and durability under dynamic load cycle conditions. MEA configurations representative of state-of-the-art transport applications shall be utilised.

A particular challenge concerns the identification and characterisation of contaminants originating from the HRS (TRL 8) and their impact on fuel cell performance and durability.

Based on the results, mitigation methods (e.g. in-line monitoring of hydrogen quality at HRS) should be developed and appropriate revision of ISO 14687-2:2012 proposed. A major focus should be on avoiding the use of ‘total’ parameters where possible. The work will also support revision of ISO 14687-3:2014.

Tolerance levels for impurities depend on the fuel utilisation and load profile of the PEMFC. Therefore, the susceptibility to contaminants should be characterised at PEMFC system level, using realistic automotive conditions and drive cycles, including frequent voltage and start-stop cycling as well as very high maximum current densities (2.5 A cm-2). The susceptibility to contaminants should be characterised using representative fuel utilisation rates, including enrichment of contaminants in the anode recirculation loop. Ultra-low anode PGM loadings (0.02 mg cm-2 or less) should be included to support minimising use of PGM and provide information for future revisions of ISO 14687 standards.

The project should address the following key issues:

Evaluate the impact of contaminants, including relevant mixtures of contaminants, based on risk analysis of hydrogen supply chain, under automotive operation conditions, using MEA configurations appropriate for future automotive applications. Identify the critical components and maintenance practices in the HRS that can, in addition to other common sources, introduce contaminants into the hydrogen fuel. Provide technical data on fuel composition and impurity concentrations at HRS, focusing on impurities originating from HRS components and maintenance practices. Set up the basics to establish practically a European Laboratory beyond the project, capable of measuring all of the contaminants in the current ISO standards (14687-2:2012 and 14687-3:2014). Develop and characterise existing and novel methods for in-line monitoring of hydrogen quality at HRS for the most critical impurities identified. Build on existing knowledge through extensive use of results achieved in previous and on-going European projects as well as international networking and exchange. Study the short term (reversible) and long term (irreversible) effects of the identified critical impurities in a way that is representative of automotive PEMFC system operation (e.g. high fuel utilisation, start-up/shut-down cycling). Through risk analysis (production process) and fuel cell durability tests, identify the key impurities that can be measured instead of performing ‘total’ measurements as specified in ISO 14687 and recommend revision of the standard to ISO TC 197. Measure accumulation of contaminants in the anode recirculation loop or at the anode gas outlet; accumulation of contaminants in purged anode water; cross-over of contaminants to the cathode through the membrane, and vice versa; conversion of contaminants in the anode recirculation loop including the effect of oxygen permeating from the cathode. Communicate the results and their relevance in an effective way to ISO TC 197/WG 27&28, as well as other standard drafting organisations, enabling specification of an independent and comprehensive revised hydrogen fuel impurity matrix. The proposal should establish a link to the FCH2-JU project HyCoRA, in order to ensure complementarity and adequate take-up of its outputs, including the utilisation and further development of the qualitative and quantitative risk assessment approach of the HyCoRA project.

The subject addressed in this topic has been identified as a priority by many countries working on hydrogen and fuel cells. Collaboration with relevant international partners is recommended.

A collaboration mechanism needs to be developed with the JRC, in relation to the ongoing EU protocol harmonisation and validation activities performed in support of the FCH2-JU programme.

All deliverables and data should be public in order to support standardisation work as effectively as possible. Data anonymisation should be avoided.

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC), which manages the European hydrogen safety reference database, HIAD (dedicated mailbox [email protected]).

The FCH2-JU considers that proposals requesting a contribution from the EU of EUR 3.5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

A maximum of 1 project may be funded under this topic.

Expected duration: 3 years


Expected Impact:The proposed developments will improve understanding of contaminant effects, and thus present an important base for appropriate future hydrogen standards. This understanding will also support the discussion of "hydrogen quality requirements vs affordable hydrogen costs".

Successful development and application of in-line continuous monitoring of hydrogen impurities would reduce the incidence of poor vehicle performance and potential loss of reputation of fuel cell technology.

The expected impacts of the project include:

Identification of critical impurities originating from HRS components and operation/maintenance practices. Technical data for impurity concentrations at HRS nozzle with focus on impurities from HRS components and operation/maintenance practices. Develop and set the basics for the possibility to establish the laboratory beyond the project, capable of measuring all of the contaminants in the current ISO standards (14687-2:2012 and 14687-3:2014) in order to offer this service to the European FCH community. Recommendations for revision of ISO standards, under consideration of dynamic operating conditions, continuous full power operation (2.5 A cm-2) and future MEA configurations with anode PGM loadings of 0.02 mg cm-2 or less. Recommendations for revision of ISO standards concerning HRS components, commissioning and maintenance practices. Recommendations for revision of ISO standards for contaminants introduced by HRS components and operation and operation/maintenance practices. Recommendations for revision of ISO 14687 to allow compliance testing against hydrogen purity specifications to be more achievable. Improved and/or new methods for in-line continuous monitoring of hydrogen impurities in HRS, with a focus on CO measurement. Recommendations on the concept of an on-board hydrogen purifier.
Cross-cutting Priorities:International cooperation


ver menos

Temáticas Obligatorias del proyecto: Temática principal: Chemical engineering technical chemistry Fuel cell technology Alternative fuels

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack durability and system efficiency. International standards dealing with hydrogen quality specifications have been created (ISO 14687-2:2012 and ISO 14687-3:2014) and the former is currently under revision (ISO TC 197/WG 27&28). Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack durability and system efficiency. International standards dealing with hydrogen quality specifications have been created (ISO 14687-2:2012 and ISO 14687-3:2014) and the former is currently under revision (ISO TC 197/WG 27&28).
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme. Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme.
3.2 Submission and evaluation process: Guide to the submission and evaluation process
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
Provisions, proposal templates and evaluation forms for the type(s) of action(s) under this topic:
Research and Innovation Action:
Specific provisions and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH2 JU Model Grant Agreement
Annotated Model Grant Agreement
 
         6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.
 
         7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions, and proposals must refer to measures envisaged. Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved. See Part L of the General Annexes of the General Work Programme. 
 
        8. Additional documents:
FCH2 JU 2017 Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
Horizon 2020 Regulation of Establishment
Horizon 2020 Rules for Participation
Horizon 2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2017-1 Limiting the impact of contaminants originating from the hydrogen supply chain Specific Challenge:The composition of hydrogen delivered to fuel cell electric vehicles (FCEVs) has a significant impact on fuel cell stack...
Sin info.
FCH-04-5-2020 Guidelines for Life Cycle Sustainability Assessment (LCSA) of fuel cell and hydrogen systems
en consorcio: Specific Challenge:The ambition of the FCH 2 JU is to develop clean, efficient and affordable solutions that fully demonstrate the potential...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-2-2020 PNR on hydrogen-based fuels solutions for passenger ships
en consorcio: Specific Challenge:In April 2018, the International Maritime Organisation, IMO adopted an initial strategy on reduction of GHG emissions fro...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-1-2020 Overcoming technical and administrative barriers to deployment of multi-fuel hydrogen refuelling stations (HRS)
en consorcio: Specific Challenge:The development of a widely available hydrogen vehicle refuelling infrastructure across EU will need hydrogen to be able...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-3-2020 Development of eco-design guidelines for FCH products
en consorcio: Specific Challenge:The path towards a well-established hydrogen economy requires the deployment of sustainable FCH systems. Moreover, such a...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-4-2020 Development and validation of existing and novel recycling technologies for key FCH products
en consorcio: Specific Challenge:Previous research initiatives, such as HyTechCycling project [89],[90] have identified the current absence of viable and...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de