Innovating Works
FCH-02.3-2015
FCH-02.3-2015: Development of co-electrolysis using CO2 and water
Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other hand, hydrogen could be used in large amounts to synthetize gas and liquid hydrocarbons, whose system of storage and distribution are well established. Co-electrolysis of water and CO2 to produce H2 and CO is one of the most promising ways to convert electricity into a syngas. Water plus CO2 co-electrolysis constitutes the corner point of power-to-chemicals and power-to-fuel strategies, for green chemicals, CO2 recovery and electricity storage at large scale. Indicatively, Power to Gas, by means of the methane as energetic carrier, is a good example and the co-electrolysis process to produce hydrogen and CO as hydrocarbon precursors, is a very promising way on that.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 27-08-2015.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other hand, hydrogen could be used in large amounts to synthetize gas and liquid hydrocarbons, whose system of storage and distribution are well established. Co-electrolysis of water and CO2 to produce H2 and CO is one of the most promising ways to convert electricity into a syngas. Water plus CO2 co-electrolysis constitutes the corner point of power-to-chemicals and power-to-fuel strategies, for green chemicals, CO2 recovery and electricity storage at large scale. Indicatively, Power to Gas, by means of the methane as energetic carrier, is a good example and the co-electrolysis process to produce hydrogen and CO as hydrocarbon precursors, is a very promising way on that.

The main challenge here addressed is to store excess renewable electricity in the form of hydrogen and CO. By producing syngas, co-electrolysis would enable various storage options like methanation and storage in liquid organic carriers. Alternatively the CO in the syngas can be easily converted to hydrogen via water-gas-shift. Co-electrolysis could therefore become a... ver más

Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other hand, hydrogen could be used in large amounts to synthetize gas and liquid hydrocarbons, whose system of storage and distribution are well established. Co-electrolysis of water and CO2 to produce H2 and CO is one of the most promising ways to convert electricity into a syngas. Water plus CO2 co-electrolysis constitutes the corner point of power-to-chemicals and power-to-fuel strategies, for green chemicals, CO2 recovery and electricity storage at large scale. Indicatively, Power to Gas, by means of the methane as energetic carrier, is a good example and the co-electrolysis process to produce hydrogen and CO as hydrocarbon precursors, is a very promising way on that.

The main challenge here addressed is to store excess renewable electricity in the form of hydrogen and CO. By producing syngas, co-electrolysis would enable various storage options like methanation and storage in liquid organic carriers. Alternatively the CO in the syngas can be easily converted to hydrogen via water-gas-shift. Co-electrolysis could therefore become a more efficient way of producing hydrogen from electricity. This topic will contribute to hydrogen carriers, using CO2. The produced syngas, CO plus hydrogen, is again in the scope for multiple ways of conversion, including filtration and utilization of hydrogen for transport and combustion / conversion of CO for stationary applications.

Specifically, Solid Oxide Electrolysis (SOE) co-electrolysis towards liquid fuels offers advantages over an electrolysis plus methanation process, in case where hydrocarbon (H/C) fuels are the desired final products. Moreover, co-electrolysis can be fed with recycled CO2 towards the progressive reduction of GHG emissions, where the produced H2 can be used for the synthesis of light-H/Cs as H2 carriers. The commercialization of co-electrolysis will provide a simpler and cost efficient way for the production of light-fuels compared to the mainstream technologies, whereas it is advantageous that the expected technology development can be based on the on the existing status of Solid Oxide Cells.

To commercialize this technology improved component design and system optimisation are required to increase efficiency, as well as a clear understanding of the integration of the technology in the energy system.


Scope:Solid Oxide Electrolysis Cells (SOEC) promise high efficient conversion of renewable electricity into hydrogen and, via hydrogen, into other products. The current state-of-the-art makes use of materials and designs developed for solid oxide fuel cells and improvements in efficiency can be achieved by optimising these materials and designs for SOEC.

The topic therefore asks for:

Novel cell structure and design, including novel electrolyte products and/or new developed electrodes Design and development of the co-electrolysis process (materials, reactor, operating conditions) towards direct fuel production Validate the co-electrolysis operation for different targeted outlet H2/CO compositions depending on the synthetic fuel to be produced Validate its operation with durations over 1,000 hours targeting and defining adapted designs and/or operating conditions to achieve degradation rates below 1% efficiency and 1,000h lifetime Optionally projects can also:

Develop concepts of co-electrolyser for coupling with downstream catalytic reactors for gas or liquid fuels synthesis Asses the techno-economic benefits of co-electrolysis for gas or liquid fuel synthesis in comparison to other water electrolysis technologies Perform a life cycle assessment on the CO2 to prove the recycling potential of this technology Further there is a need for a techno-economic assessment of the technology. An important problem concerns the variability in prices of CO2 coming from different processes, as well as prices of electricity from different sources, such as nuclear, geothermal, hydroelectricity and wind. Other economic factors should be considered taking into account the whole supply chain, i.e. costs of distribution, transportations, taxations and subsidies.

The proposal has therefore to clearly indicate the system engineering of the complete process in which the co-electrolyser will be considered as well as the strategy of operation, including:

Process for CO2 recovery and reutilization in the co-electrolysis Integration with the methanation process Upgrade of the produced synthetic fuel to reach grid specifications
Expected Impact:Proposals addressing the described technology should carefully justify the current state of the art and the potential evolution of the technology until 2025, to be commercially available and competitive ex-aequo with the conventional syngas production technologies.

The project is finally expected to assess that co-electrolysis may offer a competitive advantage against state-of-the-art technologies for syngas production. The related business case should be part of the project results. The technical performances required to have a profitable business case together with low GHG emission shall be identified.

The proposal is expected to have the following impacts:

Achieve near 50% conversion efficiency from electricity to syngas prove the concept of co-electrolysis in representative conditions (system scale and power range) as well as identification of real life application areas including the CO2 sources increase the durability of the co-electrolyser to at least 1,000 hours, from the actual results of lab scale proof of concept systems decrease the production cost of synthetic gas or liquid fuels with respect to the actual processes. Proposals should present some data on methodology applied and targets proposed select the most suitable technologies involved in the co-electrolysis process (from CO2 to electricity and fuel production/distribution) and assess the most cost effective route for the production of synthetic fuels.
ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other hand, hydrogen could be used in large amounts to synthetize gas and liquid hydrocarbons, whose system of storage and distribution are well established. Co-electrolysis of water and CO2 to produce H2 and CO is one of the most promising ways to convert electricity into a syngas. Water plus CO2 co-electrolysis constitutes the corner point of power-to-chemicals and power-to-fuel strategies, for green chemicals, CO2 recovery and electricity storage at large scale. Indicatively, Power to Gas, by means of the methane as energetic carrier, is a good example and the co-electrolysis process to produce hydrogen and CO as hydrocarbon precursors, is a very promising way on that. Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other hand, hydrogen could be used in large amounts to synthetize gas and liquid hydrocarbons, whose system of storage and distribution are well established. Co-electrolysis of water and CO2 to produce H2 and CO is one of the most promising ways to convert electricity into a syngas. Water plus CO2 co-electrolysis constitutes the corner point of power-to-chemicals and power-to-fuel strategies, for green chemicals, CO2 recovery and electricity storage at large scale. Indicatively, Power to Gas, by means of the methane as energetic carrier, is a good example and the co-electrolysis process to produce hydrogen and CO as hydrocarbon precursors, is a very promising way on that.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Other Information:
TRL start: 3
TRL end: 5
Indicative funding: The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 2.5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.
Number of projects: A maximum of 1 project may be funded under this topic.
Expected duration: 3 years
Type of action: Research and Innovation Action
The conditions related to this topic are provided in the FCH2 JU Work Plan 2015 and its General Annexes.
Please read carefully all provisions below before the preparation of your application.
The budget breakdown for this call is given in the call conditions section of the work programme.
List of countries and applicable rules for funding: described in part A of the General Annexes of the FCH2 JU Work Plan 2015.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the FCH2 JU Work Plan 2015.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part F of the General Annexes of the FCH2 JU Work Plan 2015.
3.2 FCH2 Guide for applicants on submission and evaluation
 
Proposal page limits and layout: Please refer to Part B of the standard proposal template.
 
Indicative timeta...
Other Information:
TRL start: 3
TRL end: 5
Indicative funding: The FCH 2 JU considers that proposals requesting a contribution from the EU of EUR 2.5 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.
Number of projects: A maximum of 1 project may be funded under this topic.
Expected duration: 3 years
Type of action: Research and Innovation Action
The conditions related to this topic are provided in the FCH2 JU Work Plan 2015 and its General Annexes.
Please read carefully all provisions below before the preparation of your application.
The budget breakdown for this call is given in the call conditions section of the work programme.
List of countries and applicable rules for funding: described in part A of the General Annexes of the FCH2 JU Work Plan 2015.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the FCH2 JU Work Plan 2015.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part F of the General Annexes of the FCH2 JU Work Plan 2015.
3.2 FCH2 Guide for applicants on submission and evaluation
 
Proposal page limits and layout: Please refer to Part B of the standard proposal template.
 
Indicative timetable for evaluation and grant agreement:
Information on the outcome of evaluation: maximum 5 months from the call deadline.
Signature of grant agreements: maximum 8 months from the call deadline.
 
Provisions, proposal templates and evaluation forms for the type of action under this topic:
FCH2 Research and Innovation Action (FCH2-RIA)
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
FCH2 Model Grant Agreement
H2020 Annotated Grant Agreement
 
Additional provisions:
FCH2 JU budget flexibility
Technology readiness levels (TRL): described in part E of the General Annexes of the FCH2 JU Work Plan 2015.
 
Open access must be granted to all scientific publications resulting from Horizon 2020 (including FCH2 JU) actions, and proposals must refer to measures envisaged. Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
 
 FCH2 JU additional documents
FCH2 JU Work Plan 2015 - call description
FCH2 JU Multi Annual Work Plan
FCH2 JU Regulation of establishment
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2015 Development of co-electrolysis using CO2 and water Specific Challenge:The establishment of the hydrogen economy is constrained by different factors, such as handling and storage. On the other...
Sin info.
FCH-02-5-2020 Underground storage of renewable hydrogen in depleted gas fields and other geological stores
en consorcio: Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-1-2020 Catalyst development for improved economic viability of LOHC technology
en consorcio: Specific Challenge:Hydrogen is a flexible energy carrier that can be produced from any energy source, and which can be converted into variou...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-8-2020 Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
en consorcio: Specific Challenge:In order to fight climate change, the need to reduce the emission of greenhouse gases will force the chemical industry to...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-6-2020 Electrolyser module for offshore production of renewable hydrogen
en consorcio: Specific Challenge:The foreseen magnitude of renewable electricity (RE) production requires the development of large-scale offshore wind and...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-7-2020 Cyclic testing of renewable hydrogen storage in a small salt cavern
en consorcio: Specific Challenge:The combination of variable renewable energy, electrolysers and geological stores can provide a means for capturing and h...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de