Innovating Works
FCH-02-12-2017
FCH-02-12-2017: Demonstration of fuel cell-based energy storage solutions for isolated micro-grid or off-grid remote areas
Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due to the special challenges posed by the remoteness in terms of difficult access, harsh climate, low population density. The production of electricity in these areas generally derives from combustion plants powered by fossil fuels and the cost of electrical energy in these areas is heavily dependent on the high cost of these fossil fuels (i.e. the installation cost, the service logistics and the fuel transport) due to the remote location.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 20-04-2017.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due to the special challenges posed by the remoteness in terms of difficult access, harsh climate, low population density. The production of electricity in these areas generally derives from combustion plants powered by fossil fuels and the cost of electrical energy in these areas is heavily dependent on the high cost of these fossil fuels (i.e. the installation cost, the service logistics and the fuel transport) due to the remote location.

Today, numerous islands have significant renewable energy capacity or plan to invest in this sector. However, most of these isolated energy systems have not yet been able to guarantee their independence from fossil fuels. This is mainly because of the renewables intermittency and the lack of long term (weeks, months) energy storage solutions for these remote locations.

The specific challenge of the topic is to demonstrate in isolated micro-grids and/or off grid sites the implementation of reliable and clean integrated power solution based on electrolyser and fuel cell technology to secur... ver más

Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due to the special challenges posed by the remoteness in terms of difficult access, harsh climate, low population density. The production of electricity in these areas generally derives from combustion plants powered by fossil fuels and the cost of electrical energy in these areas is heavily dependent on the high cost of these fossil fuels (i.e. the installation cost, the service logistics and the fuel transport) due to the remote location.

Today, numerous islands have significant renewable energy capacity or plan to invest in this sector. However, most of these isolated energy systems have not yet been able to guarantee their independence from fossil fuels. This is mainly because of the renewables intermittency and the lack of long term (weeks, months) energy storage solutions for these remote locations.

The specific challenge of the topic is to demonstrate in isolated micro-grids and/or off grid sites the implementation of reliable and clean integrated power solution based on electrolyser and fuel cell technology to secure cost-effective power supply, with the following site characteristics:

Accessibility for installation, service and maintenance is complex and expensive (transport and time); Current power supply is not reliable (many power outages); Import of fuel is expensive resulting in high electricity price (at least 0.25 Euro/kWh); Use of fossil fuel and CO2 emissions are high; Local commitment to go for 100% renewables energy system; Storage of local energy sources is not in place today.
Scope:The goal of this topic is to demonstrate the technical and economic viability of fuel cell technologies generating electrical energy in off-grid or isolated micro-grid areas, as stand-alone solution integrated with electrolyser and renewables.

Fuel cell technologies in the power range of 5-200 kW will be demonstrated in at least 2 sites as stand-alone and back-up power supply of technical installations (i.e. telecommunications equipment or similar) OR as end user power supply in off-grid or micro-grid remote areas. A minimum of 250 kW total power production (fuel cell) will be demonstrated. This will allow addressing different load requirement of isolated sites (e.g. remote businesses or housing/schools).

Existing sources of renewable energy will be used. Demonstration of electrolyser, storage equipment and fuel cell system is in the scope of the project. The size of the electrolyser will be defined according to the specific site requirements (i.e. type and size of the local renewable source, and especially time profile of the renewable along the day/week).

The project should:

Validate real demonstration units in representative applications of isolated micro-grid or off-grid areas, in order to enable suppliers, end users and general stakeholders to gain experience throughout the value chain; and Demonstrate the added value of hydrogen based power-to-power energy storage solutions with respect to alternative technologies in terms of economics, technical capabilities and environmental benefits. Demonstrate a successful operation for a cumulated duration of at least 2 years Further objectives:

Demonstration through field applications of the advantages of innovative technologies (hardware or software) including, but not limited to, monitoring, control, diagnostics, lifetime estimation, new BoP components; Demonstration of cost efficient solutions to the remote area, service and maintenance challenges; Online monitoring of operating conditions, load demands and system output will provide initial data to determine the overall efficiency of the system within the testing period; Optimization of power electronics to guarantee a proper integration of electrolyser and fuel cell products with the renewable source and end user/microgrid. The project will be open to all fuel cell technologies.

Field demonstration usage data, efficiency, reliability are to be reported.

The proposals should represent a step forward former micro-grid and off-grid project results.

The consortium will include EU electrolyser and fuel cell system manufacturers, relevant suppliers for Balance-of-Plant components and research institutions or academic groups.

International collaboration in this field is highly encouraged, especially with IPHE members.

TRL at start: 6

TRL at end: 7

Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC), which manages the European hydrogen safety reference database, HIAD (dedicated mailbox [email protected]).

The maximum FCH 2 JU contribution that may be requested is EUR 5 million per project. This is an eligibility criterion – proposals requesting FCH 2 JU contributions above this amount will not be evaluated.

Expected duration: 3-5 years


Expected Impact:Following the topic from AWP2015 related to the development of electrolysers for hydrogen production in off-grid applications, this topic will focus on demonstration of integrated fuel cell-based energy solutions in off-grid remote areas or isolated micro-grid.

This demonstration must not only raise public awareness; it should be used to establish confidence in technology, business models and market readiness with end-users and authorities of isolated territories.

The project should focus on the following impacts:

Energy independency at the local scale, with maximum recovery of locally available RES; Reduction of the cost of energy to the final users; Reduction of use of fossil fuels and CO2 emissions; Reduce CAPEX in line with KPIs at 2020 of the MAWP: 3M€/(t/d) for electrolysers and 4,500€/kW for fuel cell systems. Proposals able to achieve improvements on the MAWP targets will be given preference. Increase system lifetime to more than 15 years. Demonstrate a viable solution and a replicable business case. Improvement of energy supply security and reliability. Supplier and user experience of installation/commissioning, operation, maintenance and use of fuel cell power generation. To enable generalization of the field experience obtained, benefit from experience worldwide and facilitate technology replication, it is desirable that the selected project could feed into relevant ongoing standardization activities on fuel cells during the project.


Cross-cutting Priorities:International cooperation


ver menos

Temáticas Obligatorias del proyecto: Temática principal: Fuel cell technology Technology commercialisation Industrial sectoral change

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due to the special challenges posed by the remoteness in terms of difficult access, harsh climate, low population density. The production of electricity in these areas generally derives from combustion plants powered by fossil fuels and the cost of electrical energy in these areas is heavily dependent on the high cost of these fossil fuels (i.e. the installation cost, the service logistics and the fuel transport) due to the remote location. Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due to the special challenges posed by the remoteness in terms of difficult access, harsh climate, low population density. The production of electricity in these areas generally derives from combustion plants powered by fossil fuels and the cost of electrical energy in these areas is heavily dependent on the high cost of these fossil fuels (i.e. the installation cost, the service logistics and the fuel transport) due to the remote location.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme. Please read carefully all provisions below before the preparation of your application.
List of countries and applicable rules for funding: described in part A of the General Annexes of the General Work Programme.
Note also that a number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
Eligibility and admissibility conditions: described in part B and C of the General Annexes of the General Work Programme.
The following exceptions apply (see 'chapter 3.3. Call management rules' from the FCH2 JU 2017 Work Plan and specific topic description):
- “For some, well-identified topics it is therefore duly justified to require as an additional condition for participation that at least one constituent entity of the Industry Grouping or Research Grouping is among the participants in the consortium”;
- “For all Innovation Activities, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution”.
Proposal page limits and layout: Please refer to Part B of the FCH2 JU proposal template.
 
Evaluation
3.1  Evaluation criteria and procedure, scoring and threshold: described in part H of the General Annexes of the General Work Programme.
3.2 Submission and evaluation process: Guide to the submission and evaluation process
      
Indicative timetable for evaluation and grant agreement:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
Provisions, proposal templates and evaluation forms for the type(s) of action(s) under this topic:
Innovation Action:
Specific provisions and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH2 JU Model Grant Agreement
Annotated Model Grant Agreement
 
         6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply.
 
         7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions, and proposals must refer to measures envisaged. Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved. See Part L of the General Annexes of the General Work Programme.
 
        8. Additional documents:
FCH2 JU 2017 Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
Horizon 2020 Regulation of Establishment
Horizon 2020 Rules for Participation
Horizon 2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2017-1 Demonstration of fuel cell-based energy storage solutions for isolated micro-grid or off-grid remote areas Specific Challenge:Isolated areas in Europe (e.g. villages, alpine refuges or 1000s of islands) have high electricity generation cost, due t...
Sin info.
FCH-02-5-2020 Underground storage of renewable hydrogen in depleted gas fields and other geological stores
en consorcio: Specific Challenge:The increasing contribution of variable renewable energy (VRE) in the electricity grid is creating a substantial temporal...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-1-2020 Catalyst development for improved economic viability of LOHC technology
en consorcio: Specific Challenge:Hydrogen is a flexible energy carrier that can be produced from any energy source, and which can be converted into variou...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-8-2020 Demonstration of large-scale co-electrolysis for the Industrial Power-to-X market
en consorcio: Specific Challenge:In order to fight climate change, the need to reduce the emission of greenhouse gases will force the chemical industry to...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-6-2020 Electrolyser module for offshore production of renewable hydrogen
en consorcio: Specific Challenge:The foreseen magnitude of renewable electricity (RE) production requires the development of large-scale offshore wind and...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-02-7-2020 Cyclic testing of renewable hydrogen storage in a small salt cavern
en consorcio: Specific Challenge:The combination of variable renewable energy, electrolysers and geological stores can provide a means for capturing and h...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de