Innovating Works
DT-TDS-05-2020
DT-TDS-05-2020: AI for Health Imaging
Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, prevention and personalised care. Analysis of health images is one of the most promising fields for applying AI in healthcare, contributing to better prediction, diagnosis and treatment of diseases. In order to develop and test reliable AI applications in the field, access to large-volume of high- quality data is needed.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 13-11-2019.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, prevention and personalised care. Analysis of health images is one of the most promising fields for applying AI in healthcare, contributing to better prediction, diagnosis and treatment of diseases. In order to develop and test reliable AI applications in the field, access to large-volume of high- quality data is needed.


Scope:This action should contribute to testing and developing AI tools and analytics focused on the prevention, prediction and treatment of the most common forms of cancer while providing solutions to securely share health images across Europe.

Proposals should set up and contribute to populate a large interoperable repository of health images, enabling the development, testing and validation of AI–based health imaging solutions to improve diagnosis, disease prediction and follow-up of the most common forms of cancer[1].

The repository should include high quality, interoperable, anonymised or pseudo-anonymised data sets of annotated cases, based on data donorship, and should comply wit... ver más

Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, prevention and personalised care. Analysis of health images is one of the most promising fields for applying AI in healthcare, contributing to better prediction, diagnosis and treatment of diseases. In order to develop and test reliable AI applications in the field, access to large-volume of high- quality data is needed.


Scope:This action should contribute to testing and developing AI tools and analytics focused on the prevention, prediction and treatment of the most common forms of cancer while providing solutions to securely share health images across Europe.

Proposals should set up and contribute to populate a large interoperable repository of health images, enabling the development, testing and validation of AI–based health imaging solutions to improve diagnosis, disease prediction and follow-up of the most common forms of cancer[1].

The repository should include high quality, interoperable, anonymised or pseudo-anonymised data sets of annotated cases, based on data donorship, and should comply with relevant ethics, security requirements and data protection legislation. Gender aspects should be considered appropriately. It should ensure data quality and interoperability based on common standards and open Application Programming Interfaces (APIs).

Proposers should specify measures for validating AI-based solutions for health images, such as the effectiveness of clinical decision making. There should be rigorous, peer-reviewed scientific evidence establishing their safety, validity, reproducibility, usability, reliability and usefulness for better health outcomes. It is critical to show how AI-based solutions will deal with and inform about possible failures, inaccuracies and errors. Adequate performance metrics, monitoring and evaluation criteria and procedures should be put in place. The reasoning behind AI-based conclusions and recommendations should be explained so that users can understand their situation and be able to consent or challenge any proposed course of action.

The consortium should build on relevant national and EU activities and bring together: 1) expertise to set up the infrastructure, ensuring the appropriate sharing of data quality and interoperability, 2) AI developers/expertise to experiment its content while ensuring compliance with relevant legislations

The Commission considers that proposals requesting from the EUR 8 -10 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.


Expected Impact:The proposal should provide appropriate indicators to measure its progress and specific impact in the following areas:

Contributing towards the creation of a EU-wide repository of health images dedicated to the most common forms of cancer, enabling experimentation of AI-based solutions to improve diagnosis, treatment and follow-up and contribute to a more precise and personalised management of cancer. Contributing to developing technical, organisational and ethical standards for AI for health imagingPromoting access to anonymised health image data sets to be made more openly reusable across the EU for training AI applications.Increasing trust in AI solutions among users (healthcare professionals and patients), investors and stakeholders at industry and academia.
Cross-cutting Priorities:Open ScienceOpen InnovationGender


[1]As reported by the World Health Organisation, see for example https://www.who.int/news-room/fact-sheets/detail/cancer

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, prevention and personalised care. Analysis of health images is one of the most promising fields for applying AI in healthcare, contributing to better prediction, diagnosis and treatment of diseases. In order to develop and test reliable AI applications in the field, access to large-volume of high- quality data is needed. Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, prevention and personalised care. Analysis of health images is one of the most promising fields for applying AI in healthcare, contributing to better prediction, diagnosis and treatment of diseases. In order to develop and test reliable AI applications in the field, access to large-volume of high- quality data is needed.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los componentes se integran de forma que la configuración del sistema coincida con la aplicación final en casi todos los aspectos. Se prueba el rendimiento en un entorno operativo simulado. La diferencia principal con el TRL 4 es el aumento a una fidelidad media y la aplicación al entorno real. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme.
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
The thresholds for each criterion will be 4 (Excellence), 4 (Impact) and 3 (Implementation). The cumulative threshold will be 12.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
Information on the outcome of evaluation (two-stage call):
For stage 1: maximum 3 months from the deadline for submission.
For stage 2: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
  1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme.
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
The thresholds for each criterion will be 4 (Excellence), 4 (Impact) and 3 (Implementation). The cumulative threshold will be 12.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation (single-stage call): maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
Information on the outcome of evaluation (two-stage call):
For stage 1: maximum 3 months from the deadline for submission.
For stage 2: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Research and Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
 
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
8. Additional documents:
1. Introduction WP 2018-20
2. Health, demographic change and well-being WP 2018-20
3. Dissemination, Exploitation and Evaluation WP 2018-20
4. Cross-cutting activities WP 2018-20
General annexes to the Work Programme 2018-2020
Legal basis: Horizon 2020 Regulation of Establishment
Legal basis: Horizon 2020 Rules for Participation
Legal basis: Horizon 2020 Specific Programme 
 
7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-SC1-FA-DTS-2018-2020 AI for Health Imaging Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, pre...
Sin info.
DT-TDS-01-2019 Smart and healthy living at home
en consorcio:
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
DT-TDS-04-2020 AI for Genomics and Personalised Medicine
en consorcio: Specific Challenge:Several national and regional initiatives already support the pooling of genomic and other health data to advance researc...
Cerrada hace 4 años | Próxima convocatoria prevista para el mes de
DT-TDS-05-2020 AI for Health Imaging
en consorcio: Specific Challenge:Artificial Intelligence (AI) offers substantial opportunities for healthcare, supporting better diagnosis, treatment, pre...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de