Innovating Works
SU-SPACE-23-SEC-2019
SU-SPACE-23-SEC-2019: Advanced research in Near Earth Objects (NEOs) and new payload technologies for planetary defence
Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the development of spacecraft instruments and data exploitation, both for the design of asteroids impact mitigation missions and the assessment of the associated effects.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 12-03-2019.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the development of spacecraft instruments and data exploitation, both for the design of asteroids impact mitigation missions and the assessment of the associated effects.

In addition, in order to conduct spacecraft close proximity operations to NEOs and undertake mitigation demonstration missions, it is necessary to have a number of specific technologies and instruments readily available to conduct missions to asteroids with very weak gravitational fields.

The selection of NEO targets for space missions, either for science or mitigation, must guarantee both technical feasibility and high scientific/mitigation return. In this respect ground-based observations represent an essential means to investigate the physical and dynamical properties of the NEO population as a whole, thus leading to further strengthening the science return of a mission, as well as optimising the choice of mission targets. At present our knowledge of the physical characteristics of the NEO population is only around 20%.

New technologies, su... ver más

Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the development of spacecraft instruments and data exploitation, both for the design of asteroids impact mitigation missions and the assessment of the associated effects.

In addition, in order to conduct spacecraft close proximity operations to NEOs and undertake mitigation demonstration missions, it is necessary to have a number of specific technologies and instruments readily available to conduct missions to asteroids with very weak gravitational fields.

The selection of NEO targets for space missions, either for science or mitigation, must guarantee both technical feasibility and high scientific/mitigation return. In this respect ground-based observations represent an essential means to investigate the physical and dynamical properties of the NEO population as a whole, thus leading to further strengthening the science return of a mission, as well as optimising the choice of mission targets. At present our knowledge of the physical characteristics of the NEO population is only around 20%.

New technologies, such as wide-field high-sensitivity telescopes, will provide in the near future the possibility to detect with enough warning time (from hours to days) the so-called "imminent impactors", i.e. asteroids discovered while in route of collision with the Earth. The vast majority are objects of a few meters in size which are likely to eventually produce meteorites. Performing a physical characterization of these objects before they enter the Earth's atmosphere would provide data needed for calibrating the models used to determine the physical characteristics of the NEO population from ground observational data. The capability to network large telescopes, as well as radar facilities, with such wide-field assets will be key for such physical characterization.


Scope:The aim of this topic is the maturation or adaptation to specific use case of existing modelling capabilities and the development of technologies and instruments in support of missions to asteroids.

Each proposal shall address one or two of the following three sub-topics:

a) Maturation or adaptation to specific use cases of existing modelling capabilities.

These include the modelling of the outcome of a kinetic impactor as a function of assumed physical properties, and the implementation of benchmarking campaigns for the cross-validation of the different impact numerical models. The modelling of the dynamical and physical states of a target NEO (including binary asteroids) and their changes due to the effects of a kinetic impactor, should also be addressed, as well as modelling and testing geophysical surface and regolith processes in the low-gravity regimes of NEOs (this includes also thermal processes and surface composition characteristics).

b) Development of instruments, technologies and associated data exploitation models in support of missions to asteroids.

Payload developments are necessary to increase the knowledge of asteroid physical properties directly influencing the efficiency of a kinetic impactor deflection mission. These should include specific focus on the sub-surface and interior structure, as well as the surface mechanical properties via direct and indirect measurement techniques (such as the response of a surface to the interaction with a lander). Focus should be placed on high-accuracy shape models, surface topography and features, including the impact crater of a kinetic impactor and its surroundings.

Maximum exploitation of scientific and technical data shall be ensured by developing all the necessary algorithms and simulators to be prepared for close-proximity operations and payload data analyses (e.g. shape reconstruction from multiple data sources, performance simulators for radioscience, etc.). Specific focus shall be placed on the conditions required by payload instruments to fulfill the mission objectives.

c) Improvement of our knowledge of the physical characteristics of the NEO population.

Focus is on fostering the physical characterization of NEOs by:

1) the efficient use and pooling of existing large aperture telescopes, radar facilities and data processing capabilities; 2) performing high-quality physical observations and calculation; 3) developing methods for rapid estimation of the orbit of an object and characterization of its physical and dynamical properties; and 4) fostering international collaboration focused on timely follow-up observations of potentially hazardous objects (PHOs).

The proposed project shall coordinate with existing surveys devoted to NEO discovery and radar facilities in order to provide a rapid response system for quickly characterize a small asteroid flying-by or in route of collision with the Earth (imminent impactor).

For all aforementioned sub-topics, proposals shall seek complementarity and synergy with related European initiatives or international coordination efforts such as those undertaken by ESA or in the framework of the UN.

The involvement of post-graduate scientists, engineers and researchers is encouraged, for example through professional work experience or through fellowships/scholarships as applicable.

The Commission considers that proposals requesting a contribution from the EU of between EUR 2 and 4 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.

This topic contributes to the Horizon 2020 focus area "Boosting the effectiveness of the Security Union ".


Expected Impact:Advance our understanding of the dynamical and physical states of a target NEO and their changes due to the effects of a kinetic impactor;Advance payload technology, and the associated performance simulators for the thorough characterization of asteroid properties affecting planetary defence missions;Advance the capability of timely detection and characterization of potential imminent impactors of Earth.
ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the development of spacecraft instruments and data exploitation, both for the design of asteroids impact mitigation missions and the assessment of the associated effects. Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the development of spacecraft instruments and data exploitation, both for the design of asteroids impact mitigation missions and the assessment of the associated effects.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Amortizaciones.
Activos.
Otros Gastos.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme. 
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Research and Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – wher...
1. Eligible countries: described in Annex A of the Work Programme.
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2. Eligibility and admissibility conditions: described in Annex B and Annex C of the Work Programme. 
 
Proposal page limits and layout: please refer to Part B of the proposal template in the submission system below.
 
3. Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the Work Programme.  
Submission and evaluation processes are described in the Online Manual.
4. Indicative time for evaluation and grant agreements:
Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
Signature of grant agreements: maximum 8 months from the deadline for submission.
5. Proposal templates, evaluation forms and model grant agreements (MGA):
Research and Innovation Action:
Specific provisions and funding rates
Standard proposal template
Standard evaluation form
General MGA - Multi-Beneficiary
Annotated Grant Agreement
6. Additional provisions:
Horizon 2020 budget flexibility
Classified information
Technology readiness levels (TRL) – where a topic description refers to TRL, these definitions apply
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
8. Additional documents:
1. Introduction WP 2018-20
5. Introduction to Leadership in enabling and industrial technologies (LEITs) WP 2018-20
5iii. Space WP 2018-20
General annexes to the Work Programme 2018-2020
Legal basis: Horizon 2020 Regulation of Establishment
Legal basis: Horizon 2020 Rules for Participation
Legal basis: Horizon 2020 Specific Programme
7. Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-SPACE-2018-2020 Advanced research in Near Earth Objects (NEOs) and new payload technologies for planetary defence Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the d...
Sin info.
SU-SPACE-23-SEC-2019 Advanced research in Near Earth Objects (NEOs) and new payload technologies for planetary defence
en consorcio: Specific Challenge:It is fundamental to improve our understanding of Near-Earth Objects (NEOs) through scientific modelling as well as the d...
Cerrada hace 6 años | Próxima convocatoria prevista para el mes de