Innovating Works
FCH-04-3-2018
FCH-04-3-2018: Accelerated Stress Testing (AST) protocols for Solid Oxide Cells (SOC)
Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack components as cells, interconnects or seals. Targeting the understanding of realistic failure modes and the development of ASTs that address those failure modes is a valuable contribution in order to shorten the development time of new materials to be integrated in the next system generation. While different ASTs are already available for PEMFC, this topic is much less advanced in SOCs.Degradation rates currently reported in SOFCs are below 1%/1000h, and they are a bit higher in SOE mode (a few %/1000h). Performing very long tests (several years) are generally not compatible with the availabilities of test stations in laboratories. In addition, the validation of stack components over several years before their integration in a real system is neither compatible with times requested by fuel cell manufacturers for the market deployment of their product.Therefore, accelerated stress testing is of great benefit. First accelerated testing has been done in SOFC and to a much less extent in SOE, but an extensive work is needed for correlation or transfer function to “Real World” data. As of today, a growing number of FCH 2 JU demonstration projects involving SOFCs are ongoing and expected in Europe, such as for example ENE.FIELD and PACE including SOFC systems, while SOE demonstration projects don’t exist yet but are expected in a near future (such as already in this work-plan). Some projects like ENDURANCE improved the understanding of natural and event-related degradation processes of SOFC materials, thanks to systematic post-mortem investigation that identified critical components for stack lifetime. Multiscale models were set up and refined and specific samples and experimental sessions were designed to statistically validate suggested improvements. A similar coupled experimental/modelling approach has been developed and validated in SOPHIA project, highlighting some phenomena having more extensive effects in SOE.Finally, some monitoring and diagnostic tools are developed by GENIUS, DESIGN and DIAMOND projects, providing feedback regarding evolution of the performance of the system in correlation with user profile. The availability of quantitative information on stack and its components lifetime as function of system operations, as well as analytical tools to forecast their durability is a valuable asset for further actions towards e.g. optimal maintenance plans.In order to retrieve most benefits from these past, on-going or starting projects it is important to link these evolutions to materials evolution with quantitative data for various usages.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 24-04-2018.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos: Objetivo del proyecto:

Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack components as cells, interconnects or seals. Targeting the understanding of realistic failure modes and the development of ASTs that address those failure modes is a valuable contribution in order to shorten the development time of new materials to be integrated in the next system generation. While different ASTs are already available for PEMFC, this topic is much less advanced in SOCs.Degradation rates currently reported in SOFCs are below 1%/1000h, and they are a bit higher in SOE mode (a few %/1000h). Performing very long tests (several years) are generally not compatible with the availabilities of test stations in laboratories. In addition, the validation of stack components over several years before their integration in a real system is neither compatible with times requested by fuel cell manufacturers for the market deployment of their product.Therefore, accelerated stress testing is of great benefit. First accelerated testing has been done in SOFC and to a much less extent in SOE, but an extensive work is needed for correlation or transf... ver más

Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack components as cells, interconnects or seals. Targeting the understanding of realistic failure modes and the development of ASTs that address those failure modes is a valuable contribution in order to shorten the development time of new materials to be integrated in the next system generation. While different ASTs are already available for PEMFC, this topic is much less advanced in SOCs.Degradation rates currently reported in SOFCs are below 1%/1000h, and they are a bit higher in SOE mode (a few %/1000h). Performing very long tests (several years) are generally not compatible with the availabilities of test stations in laboratories. In addition, the validation of stack components over several years before their integration in a real system is neither compatible with times requested by fuel cell manufacturers for the market deployment of their product.Therefore, accelerated stress testing is of great benefit. First accelerated testing has been done in SOFC and to a much less extent in SOE, but an extensive work is needed for correlation or transfer function to “Real World” data. As of today, a growing number of FCH 2 JU demonstration projects involving SOFCs are ongoing and expected in Europe, such as for example ENE.FIELD and PACE including SOFC systems, while SOE demonstration projects don’t exist yet but are expected in a near future (such as already in this work-plan). Some projects like ENDURANCE improved the understanding of natural and event-related degradation processes of SOFC materials, thanks to systematic post-mortem investigation that identified critical components for stack lifetime. Multiscale models were set up and refined and specific samples and experimental sessions were designed to statistically validate suggested improvements. A similar coupled experimental/modelling approach has been developed and validated in SOPHIA project, highlighting some phenomena having more extensive effects in SOE.Finally, some monitoring and diagnostic tools are developed by GENIUS, DESIGN and DIAMOND projects, providing feedback regarding evolution of the performance of the system in correlation with user profile. The availability of quantitative information on stack and its components lifetime as function of system operations, as well as analytical tools to forecast their durability is a valuable asset for further actions towards e.g. optimal maintenance plans.In order to retrieve most benefits from these past, on-going or starting projects it is important to link these evolutions to materials evolution with quantitative data for various usages.


Scope:The project should address:

Identification of degradation mechanisms and quantification of degradation on aged stack components (in particular electrodes, interconnects, sealings) coming from existing demonstration projects;Development of advanced in situ and ex situ characterization techniques and accelerated stress test (AST) protocols, compatible to existing test station hardware, with the identification of transfer functions of the component degradation measured in an AST to real-world behaviour of that component.Proposal and validation of AST from materials to stack components and optionally stack level, the latter potentially more application specific when relevant. The developed AST protocols should follow where possible the formats of protocols developed in the SOCTESQA project, in order to be integrated with the EU protocol harmonization undertaken by JRC (see JRC activities);Development of models related to degradation mechanisms, implementing models describing degradation mechanisms into performance models. Evaluation of the capability of performance/degradation models to confirm and quantify the accelerating impact by adapting some operating or load profiles should be considered. The modelling tools should lead to improved in-operando prognostics and estimation of remaining useful lifetime of the SOC stack in a relevant operational environment; A key requisite for the project should be the certainty of acquisition of at least 6 aged samples of a given stack component (cell, interconnect, sealant) of at least 3 different stacks (ideally from at least two suppliers) and of the corresponding user profiles.Projects should focus on a SOC technology (SOFC, SOE, R-SOC). Therefore, the relevant actors should be included in the consortium and/or letters of intent of the materials providers should be provided. Availability of comparable non-aged materials or stack components should be foreseen, to ensure relevant comparison between “real-world” ageing and ageing caused by selected AST.International collaboration with member countries of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) is specifically encouraged for this topic.Laboratories taking part in the proposal should have a record of quality assurance in SOFC/SOEC testing to guarantee reliability and repeatability of the test results.Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox [email protected], which manages the European hydrogen safety reference database, HIAD.Test activities should collaborate and use the protocols developed by the JRC Harmonisation Roadmap (see section 3.2.B "Collaboration with JRC – Rolling Plan 2018"), in order to benchmark performance of components and allow for comparison across different projects.

The FCH 2 JU considers that proposals requesting a contribution of EUR 3 million per project would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.A maximum of 1 project may be funded under this topic.Expected duration: 3 years.


Expected Impact:ASTs will allow faster evaluation of new materials and provide standardized sets of tests to benchmark materials and/or stack components, and will accelerate the development to meet cost (7€/kg H2 produced in 2020 and between 4500 and 7500 €/kW for commercial mid-size SOFCs in 2020) and durability targets (2 years in SOEC and 8-20 years for mid-size stationary SOFCs).This is based on the following elements:

Enhanced understanding of physical correlation between user profile and degradation mechanisms on at least three stack components (e.g. cell, interconnect, sealing) and its validation with models related to degradation mechanisms;Define testing methods and evaluation criterion / criteria to allow faster evaluation than current AST of new materials and standardised tests to benchmark materials on the selected stack components with a quantified correlation between AST results and lifetime in a user profile (hydrogen production, CHP), where results should show at least similar ranking between materials or stack components with a good correlation between quantitative degradation features (to be selected such as performances degradation rates, properties losses, microstructure modifications);Validation of the methodology (i.e. comparison and correlation between “real-world” behaviour and AST caused degradation) should be achieved through a plan for coordination and agreement within the European SOC community, involving the JRC, to confirm the robustness of the AST procedures identified;Provide recommendations about improvements of monitoring and tracking systems for future deployments in order to capitalise on return of experience;Final document, including AST test methods, evaluation criteria & validation methodology, with reference to existing global SoA AST, explaining differences and additional valuable information;Recommendations for international standardisation of Accelerated Stress Testings within IEC TC105 which should where appropriate lead to a New Working Item Proposal (NWIP) or feed into ongoing standardization processes; Type of action: Research and Innovation ActionThe conditions related to this topic are provided in the chapter 3.3 and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.


Cross-cutting Priorities:International cooperation


ver menos

Temáticas Obligatorias del proyecto: Temática principal: Electrochemistry batteries and fuel cells Standards Standardisation

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack components as cells, interconnects or seals. Targeting the understanding of realistic failure modes and the development of ASTs that address those failure modes is a valuable contribution in order to shorten the development time of new materials to be integrated in the next system generation. While different ASTs are already available for PEMFC, this topic is much less advanced in SOCs.Degradation rates currently reported in SOFCs are below 1%/1000h, and they are a bit higher in SOE mode (a few %/1000h). Performing very long tests (several years) are generally not compatible with the availabilities of test stations in laboratories. In addition, the validation of stack components over several years before their integration in a real system is neither compatible with times requested by fuel cell manufacturers for the market deployment of their product.Therefore, accelerated stress testing is of great benefit. First accelerated testing has been done in SOFC and to a much less extent in SOE, but an extensive work is needed for correlation or transfer function to “Real World” data. As of today, a growing number of FCH 2 JU demonstration projects involving SOFCs are ongoing and expected in Europe, such as for example ENE.FIELD and PACE including SOFC systems, while SOE demonstration projects don’t exist yet but are expected in a near future (su... Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack components as cells, interconnects or seals. Targeting the understanding of realistic failure modes and the development of ASTs that address those failure modes is a valuable contribution in order to shorten the development time of new materials to be integrated in the next system generation. While different ASTs are already available for PEMFC, this topic is much less advanced in SOCs.Degradation rates currently reported in SOFCs are below 1%/1000h, and they are a bit higher in SOE mode (a few %/1000h). Performing very long tests (several years) are generally not compatible with the availabilities of test stations in laboratories. In addition, the validation of stack components over several years before their integration in a real system is neither compatible with times requested by fuel cell manufacturers for the market deployment of their product.Therefore, accelerated stress testing is of great benefit. First accelerated testing has been done in SOFC and to a much less extent in SOE, but an extensive work is needed for correlation or transfer function to “Real World” data. As of today, a growing number of FCH 2 JU demonstration projects involving SOFCs are ongoing and expected in Europe, such as for example ENE.FIELD and PACE including SOFC systems, while SOE demonstration projects don’t exist yet but are expected in a near future (such as already in this work-plan). Some projects like ENDURANCE improved the understanding of natural and event-related degradation processes of SOFC materials, thanks to systematic post-mortem investigation that identified critical components for stack lifetime. Multiscale models were set up and refined and specific samples and experimental sessions were designed to statistically validate suggested improvements. A similar coupled experimental/modelling approach has been developed and validated in SOPHIA project, highlighting some phenomena having more extensive effects in SOE.Finally, some monitoring and diagnostic tools are developed by GENIUS, DESIGN and DIAMOND projects, providing feedback regarding evolution of the performance of the system in correlation with user profile. The availability of quantitative information on stack and its components lifetime as function of system operations, as well as analytical tools to forecast their durability is a valuable asset for further actions towards e.g. optimal maintenance plans.In order to retrieve most benefits from these past, on-going or starting projects it is important to link these evolutions to materials evolution with quantitative data for various usages.
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Los costes de personal subvencionables cubren las horas de trabajo efectivo de las personas directamente dedicadas a la ejecución de la acción. Los propietarios de pequeñas y medianas empresas que no perciban salario y otras personas físicas que no perciban salario podrán imputar los costes de personal sobre la base de una escala de costes unitarios
Purchase costs.
Los otros costes directos se dividen en los siguientes apartados: Viajes, amortizaciones, equipamiento y otros bienes y servicios. Se financia la amortización de equipos, permitiendo incluir la amortización de equipos adquiridos antes del proyecto si se registra durante su ejecución. En el apartado de otros bienes y servicios se incluyen los diferentes bienes y servicios comprados por los beneficiarios a proveedores externos para poder llevar a cabo sus tareas
Subcontracting costs.
La subcontratación en ayudas europeas no debe tratarse del core de actividades de I+D del proyecto. El contratista debe ser seleccionado por el beneficiario de acuerdo con el principio de mejor relación calidad-precio bajo las condiciones de transparencia e igualdad (en ningún caso consistirá en solicitar menos de 3 ofertas). En el caso de entidades públicas, para la subcontratación se deberán de seguir las leyes que rijan en el país al que pertenezca el contratante
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 5:. Los elementos básicos de la innovación son integrados de manera que la configuración final es similar a su aplicación final, es decir que está listo para ser usado en la simulación de un entorno real. Se mejoran los modelos tanto técnicos como económicos del diseño inicial, se ha identificado adicionalmente aspectos de seguridad, limitaciones ambiéntales y/o regulatorios entre otros. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline...
1.   Eligible countries: described in Annex A of the H2020 main Work Programme.
      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.
 
2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.
 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):
- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"
     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.
 
3.   Evaluation:
Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
Submission and evaluation processes are described in the Online Manual.
 
4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.
 
5.   Proposal templates, evaluation forms and model grant agreements (MGA):
FCH JU Research and Innovation Action (FCH-RIA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Innovation Action (FCH-IA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
FCH JU Coordination and Support Action (FCH-CSA)
Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement
 
6.   Additional requirements:
      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties
 
Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.
7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.
Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.
Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.
Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.
Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.
Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.
Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.
The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.
8.   Additional documents
FCH JU Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme
 
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda tiene efecto incentivador, por lo que el proyecto no puede haberse iniciado antes de la presentación de la solicitud de ayuda. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
H2020-JTI-FCH-2018-1 Accelerated Stress Testing (AST) protocols for Solid Oxide Cells (SOC) Specific Challenge:This approach addresses key aspects of interest for the industry related to durability, particularly regarding the stack...
Sin info.
FCH-04-5-2020 Guidelines for Life Cycle Sustainability Assessment (LCSA) of fuel cell and hydrogen systems
en consorcio: Specific Challenge:The ambition of the FCH 2 JU is to develop clean, efficient and affordable solutions that fully demonstrate the potential...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-2-2020 PNR on hydrogen-based fuels solutions for passenger ships
en consorcio: Specific Challenge:In April 2018, the International Maritime Organisation, IMO adopted an initial strategy on reduction of GHG emissions fro...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-1-2020 Overcoming technical and administrative barriers to deployment of multi-fuel hydrogen refuelling stations (HRS)
en consorcio: Specific Challenge:The development of a widely available hydrogen vehicle refuelling infrastructure across EU will need hydrogen to be able...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-3-2020 Development of eco-design guidelines for FCH products
en consorcio: Specific Challenge:The path towards a well-established hydrogen economy requires the deployment of sustainable FCH systems. Moreover, such a...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de
FCH-04-4-2020 Development and validation of existing and novel recycling technologies for key FCH products
en consorcio: Specific Challenge:Previous research initiatives, such as HyTechCycling project [89],[90] have identified the current absence of viable and...
Cerrada hace 5 años | Próxima convocatoria prevista para el mes de