Innovating Works

H2020

Cerrada
HORIZON-CL4-2021-HUMAN-01-13
eXtended Reality Modelling (RIA)
ExpectedOutcome:Proposals are expected to contribute to the following outcomes:
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 21-10-2021.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Proposals are expected to contribute to the following outcomes:

Large-scale creation of eXtended Reality models with increased levels of interaction, context awareness, explainable autonomous decisions, human control, privacy and accessibility.Methodologies, tools and processes to build eXtended Reality services based on these models.Improved human to human and human to computer eXtended Reality interaction, in both offline and real-time context.
Scope:Recent advances in the field of Artificial Intelligence (AI) giving machines the ability to understand and derive meaning from human languages, have shown that automatic systems can exhibit human‑like performance. Machine translation, speech recognition or personal assistants are now part of our daily lives. Recent progress in AI has also enabled systems to generalise from one task to another, from one language to another, from one modality to another. Large pre-trained multilingual language models can handle different languages, even with little or no training data. The same models can cover completely different language-related tasks, such as text translation or summarisation, speech transcripti... ver más

ExpectedOutcome:Proposals are expected to contribute to the following outcomes:

Large-scale creation of eXtended Reality models with increased levels of interaction, context awareness, explainable autonomous decisions, human control, privacy and accessibility.Methodologies, tools and processes to build eXtended Reality services based on these models.Improved human to human and human to computer eXtended Reality interaction, in both offline and real-time context.
Scope:Recent advances in the field of Artificial Intelligence (AI) giving machines the ability to understand and derive meaning from human languages, have shown that automatic systems can exhibit human‑like performance. Machine translation, speech recognition or personal assistants are now part of our daily lives. Recent progress in AI has also enabled systems to generalise from one task to another, from one language to another, from one modality to another. Large pre-trained multilingual language models can handle different languages, even with little or no training data. The same models can cover completely different language-related tasks, such as text translation or summarisation, speech transcription, or sentiment analysis. Natural language Understanding and Natural Language Generation state-of-art techniques are expected to take advantage of the latest advances in research. Advances in user and environment modelling and progress in data analytics allow systems to be increasingly context-aware and efficiently support users in their decisions.

Drawing on the above-mentioned recent advances, the proposals will:

Develop pre‑trained eXtended Reality models capable of adapting to a large variety of forms of expression, interaction, languages, domains, styles and intent. Taking into account surrounding real or virtual environments, contexts, preferences and abilities of the user, the models will contribute to the general understanding of the environments and users’ knowledge, preferences, believes, abilities, intent and goals. Demonstrate the adaptation and generalisation of the eXtended Reality models, including through the integration of structured knowledge, by developing solutions capable of carrying genuine human-like interaction before, during and after an eXtended Reality experience. Integrate the solutions into several eXtended Reality use‑cases scenarios, such as media, collaborative telepresence, learning, personal assistants or information retrieval. Beyond supporting a large set of languages and modalities, the work will focus on enabling new forms of interactions, avoiding bias, whilst ensuring accessibility, privacy, transparency and explainability.

To compensate the increase of model complexity, the proposed solutions should be energy efficient thanks to optimised protocols and algorithms with equivalent performance during both training and implementation.

The proposal will ensure reproducibility and repeatability of the research results, promote an open data and interfaces standardisation, avoiding narrow de-facto standards and demonstrate clear and efficient integration paths for the European industry take up.

To further extend the application domains, address sector specific constrains, ensure reproducibility and demonstrate their integration paths, proposals are expected to organise a number of competitive calls with financial support to third parties (FSTP) and further extend the use-cases. At least 20% of the funding should be dedicated to FSTP. To that aspect, the consortium will provide guidelines and technical support in engineering integration, testing and validation to support the development of such use-cases.


Specific Topic Conditions:Activities are expected to start at TRL 2 and achieve TRL 5 by the end of the project – see General Annex B.




Cross-cutting Priorities:Digital AgendaArtificial IntelligenceSocial sciences and humanities


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:
Empresas Micro, Pequeña, Mediana, Grande
Centros Tecnológicos
Universidades
Organismos públicos

Características del Proyecto

Requisitos de diseño: Duración: Requisitos técnicos: ExpectedOutcome:Proposals are expected to contribute to the following outcomes: ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. leer más.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Condiciones: No existe condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.