Innovating Works

H2020

Cerrada
HORIZON-CL4-2024-HUMAN-01-06
Explainable and Robust AI (AI Data and Robotics Partnership) (RIA)
ExpectedOutcome:Projects are expected to contribute to one of the following outcomes:
Sólo fondo perdido 30M €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 19-03-2024.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Projects are expected to contribute to one of the following outcomes:

Enhanced robustness, performance and reliability of AI systems, including awareness of the limits of operational robustness of the systemImproved explainability and accountability, transparency and autonomy of AI systems, including awareness of the working conditions of the system
Scope:Trustworthy AI solutions, need to be robust, safe and reliable when operating in real-world conditions, and need to be able to provide adequate, meaningful and complete explanations when relevant, or insights into causality, account for concerns about fairness, be robust when dealing with such issues in real world conditions, while aligned with rights and obligations around the use of AI systems in Europe. Advances across these areas can help create human-centric AI[1], which reflects the needs and values of European citizens and contribute to an effective governance of AI technologies.

To achieve robust and reliable AI, novel approaches are needed to develop methods and solutions that work under other than model-ideal circumstances, while also having an awareness when these condit... ver más

ExpectedOutcome:Projects are expected to contribute to one of the following outcomes:

Enhanced robustness, performance and reliability of AI systems, including awareness of the limits of operational robustness of the systemImproved explainability and accountability, transparency and autonomy of AI systems, including awareness of the working conditions of the system
Scope:Trustworthy AI solutions, need to be robust, safe and reliable when operating in real-world conditions, and need to be able to provide adequate, meaningful and complete explanations when relevant, or insights into causality, account for concerns about fairness, be robust when dealing with such issues in real world conditions, while aligned with rights and obligations around the use of AI systems in Europe. Advances across these areas can help create human-centric AI[1], which reflects the needs and values of European citizens and contribute to an effective governance of AI technologies.

To achieve robust and reliable AI, novel approaches are needed to develop methods and solutions that work under other than model-ideal circumstances, while also having an awareness when these conditions break down. To achieve trustworthiness, AI system should be sufficiently transparent and capable of explaining how the system has reached a conclusion in a way that it is meaningful to the user, while also indicating when the limits of operation have been reached.

The purpose is to advance AI-algorithms that can perform safely under a common variety of circumstances, reliably in real-world conditions and predict when these operational circumstances are no longer valid. The research should aim at advancing robustness and explainability for a generality of solutions, while leading to an acceptable loss in accuracy and efficiency, and with known verifiability and reproducibility. The focus is on extending the general applicability of explainability and robustness of AI-systems by foundational AI and machine learning research. To this end, the following methods may be considered but are not necessarily restricted to:

data-efficient learning, transformers, reinforcement learning, federated and edge-learning, automated machine learning, or any combination thereof for improved robustness and explainability.hybrid approaches integrating learning, knowledge and reasoning, model-based approaches, neuromorphic computing, or other nature-inspired approaches and other forms of hybrid combinations which are generically applicable to robustness and explainability.continual learning, active learning, long-term learning and how they can help improve robustness and explainability.multi-modal learning, natural language processing, speech recognition and text understanding taking multicultural aspects into account for the purpose of increased operational robustness and the capability to explain alternative formulation[2]. Multidisciplinary research activities should address all of the following:

Proposals should involve appropriate expertise in all the relevant disciplines, and where appropriate Social Sciences and Humanities (SSH), including gender and intersectional knowledge to address concerns around gender, racial or other biases. etc.Proposals are expected to dedicate tasks and resources to collaborate with and provide input to the open innovation challenge under HORIZON-CL4-2023-HUMAN-01-04 addressing explainability and robustness. Research teams involved in the proposals are expected to participate in the respective Innovation Challenges.Contribute to making AI and robotics solutions meet the requirements of Trustworthy AI, based on the respect of the ethical principles, the fundamental rights including critical aspects such as robustness, safety, reliability, in line with the European Approach to AI. Ethics principles needs to be adopted from early stages of development and design. All proposals are expected to embed mechanisms to assess and demonstrate progress (with qualitative and quantitative KPIs, benchmarking and progress monitoring), and share communicable results with the European R&D community, through the AI-on-demand platform or Digital Industrial Platform for Robotics, public community resources, to maximise re-use of results, either by developers, or for uptake, and optimise efficiency of funding; enhancing the European AI, Data and Robotics ecosystem through the sharing of results and best practice.

In order to achieve the expected outcomes, international cooperation is encouraged, in particular with Canada and India.


Specific Topic Conditions:Activities are expected to start at TRL 2-3 and achieve TRL 4-5 by the end of the project – see General Annex B.




[1]A European approach to artificial intelligence | Shaping Europe’s digital future (europa.eu)

[2]Research should complement build upon and collaborate with projects funded under topic HORIZON-CL4-2023-HUMAN-01-03: Natural Language Understanding and Interaction in Advanced Language Technologies

ver menos

Temáticas Obligatorias del proyecto: Temática principal: The objective is to develop Trustworthy AI solutions that are robust, safe, reliable in real-world conditions, and capable of providing meaningful explanations and insights while ensuring transparency, fairness, and alignment with European values. The focus is on advancing robustness and explainability through novel AI methods and foundational research across various disciplines.

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:
Empresas Micro, Pequeña, Mediana, Grande
Centros Tecnológicos
Universidades
Organismos públicos

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto Requisitos técnicos: ExpectedOutcome:Projects are expected to contribute to one of the following outcomes: ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. leer más.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Condiciones: No existe condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
El presupuesto total de la convocatoria asciende a
Presupuesto total de la convocatoria.
Proyectos financiables en esta convocatoria.
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.
Certificado DNSH: Los proyectos presentados a esta línea deben de certificarse para demostrar que no causan perjuicio al medio ambiente. + info

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
Deducción I+D+i:
0% 25% 50% 75% 100%
La empresa puede aplicar deducciones fiscales en I+D+i de los gastos del proyecto y reducir su impuesto de sociedades. leer más