Innovating Works

H2020

Cerrada
HORIZON-CL4-2024-HUMAN-01-07
Collaborative intelligence – combining the best of machine and human (AI Data and Robotics Partnership) (RIA)
ExpectedOutcome:Projects are expected to contribute to the following outcomes:
Sólo fondo perdido 20M €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 19-03-2024.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Projects are expected to contribute to the following outcomes:

Demonstrate the value of human-machine collaboration and interaction by improved effectiveness, intuitiveness, efficiency, completeness, limits of knowledge indication and other objective or quantifiable subjective measures.Demonstrate how collaborative decision-making improves over human decision-making and that the collaborative decisions cover all stages of reasoning (that they are based on an improved coverage of data and knowledge sources, on an improved analytic ability to reason from input to output, and on a well-communicated decision). Proposals are expected to address at least one of the expected outcomes.


Scope:The R&I priorities require work at different levels, including both foundational research and well-studied piloting efforts, concentrated in impactful projects, bringing critical mass of expertise and investment to demonstrate potential for more than one major application sectors respectively.

Research should focus on:

foundational research towards the next generation of collaborative AI, bringing excellence, critical ma... ver más

ExpectedOutcome:Projects are expected to contribute to the following outcomes:

Demonstrate the value of human-machine collaboration and interaction by improved effectiveness, intuitiveness, efficiency, completeness, limits of knowledge indication and other objective or quantifiable subjective measures.Demonstrate how collaborative decision-making improves over human decision-making and that the collaborative decisions cover all stages of reasoning (that they are based on an improved coverage of data and knowledge sources, on an improved analytic ability to reason from input to output, and on a well-communicated decision). Proposals are expected to address at least one of the expected outcomes.


Scope:The R&I priorities require work at different levels, including both foundational research and well-studied piloting efforts, concentrated in impactful projects, bringing critical mass of expertise and investment to demonstrate potential for more than one major application sectors respectively.

Research should focus on:

foundational research towards the next generation of collaborative AI, bringing excellence, critical mass and novel approaches as well as quantitatively proven improvement in the levels of human-machine collaboration.simulations and experimentation (with and without humans in the loop) to explore the consequences of different interventions and/or to explore the design approaches that help manage decision making.integrating advances from [effective, efficient, anticipative, multi-modal] human-computer interaction and from [incremental, continually learned, or anticipative], automatic reasoning systems in order to create new generations of collaborative AI-systems that better and more naturally serve human needs. The means of collaboration can cover the whole range of multi-modal stimuli: lingual, image, video, sound and other forms of interaction, whatever is arguably the most appropriate in the interaction processAdvancing human-machine collaboration and interaction - operational for a broad range of AI-reasoning systems and applicable to a broad range of application areas of AI. At least one proposal will be selected with a focus on human-machine collaboration and interaction and at least one with a focus on collaborative decision-making. Proposals should clearly mention which of the two areas they address.

Multidisciplinary research activities should address all of the following:

Proposals should involve appropriate expertise in Social Sciences and Humanities (SSH), including knowledge on gender and intersectional inequalities.Research should build on existing standards or contribute to standardisation. Interoperability for data sharing should be addressed, notably through the implementation of the FAIR data principles and adopting standardised and discipline-oriented metadata schemas and ontologies.Proposals are expected to dedicate tasks and resources to collaborate with and provide input to the open innovation challenge under HORIZON-CL4-2023-HUMAN-01-04 addressing explainability and robustness. Research teams involved in the proposals are expected to participate in the respective Innovation Challenges.Projects should also build on or seek collaboration with existing projects and develop synergies with other relevant European, national or regional initiatives, funding programmes and platforms.Contribute to making AI and robotics solutions meet the requirements of Trustworthy AI, based on the respect of the ethical principles, the fundamental rights including critical aspects such as robustness, safety, reliability, in line with the European Approach to AI. Ethics principles needs to be adopted from early stages of development and design, and gender-sensitivity should be considered, where relevant. All proposals are expected to embed mechanisms to assess and demonstrate progress (with qualitative and quantitative KPIs, benchmarking and progress monitoring, as well as illustrative application use-cases demonstrating concrete potential added value), and share communicable results with the European R&D community, through the AI-on-demand platform or Digital Industrial Platform for Robotics, public community resources, to maximise re-use of results, either by developers, or for uptake, and optimise efficiency of funding; enhancing the European AI, Data and Robotics ecosystem through the sharing of results and best practice.


Specific Topic Conditions:Activities are expected to start at TRL 2-3 and achieve TRL 4-5 by the end of the project – see General Annex B.




ver menos

Temáticas Obligatorias del proyecto: Temática principal: The tool encountered an error, and I am unable to retrieve the specific text for summarization. If you have the text available, please upload it so I can assist you further.

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:
Empresas Micro, Pequeña, Mediana, Grande
Centros Tecnológicos
Universidades
Organismos públicos

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto Requisitos técnicos: The expected impacts of the project include demonstrating the value of human-machine collaboration through improved effectiveness, efficiency, and decision-making processes. Projects aim to showcase enhanced levels of human-machine collaboration, improved decision-making based on data and knowledge sources, and advancements in collaborative AI-systems that better serve human needs. The focus is on operational human-machine interaction and decision-making, addressing inequalities and gender considerations, contributing to Trustworthy AI principles, and incorporating ethical standards from the early stages of development. Collaborating with existing projects, developing synergies, and sharing results with the R&D community are crucial elements to optimize funding efficiency and enhance the European AI, Data, and Robotics ecosystem. ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. leer más.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Condiciones: No existe condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
El presupuesto total de la convocatoria asciende a
Presupuesto total de la convocatoria.
Proyectos financiables en esta convocatoria.
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.
Certificado DNSH: Los proyectos presentados a esta línea deben de certificarse para demostrar que no causan perjuicio al medio ambiente. + info

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
Deducción I+D+i:
0% 25% 50% 75% 100%
La empresa puede aplicar deducciones fiscales en I+D+i de los gastos del proyecto y reducir su impuesto de sociedades. leer más