Innovating Works

H2020

Cerrada
HORIZON-JTI-CLEANH2-2023-...
HORIZON-JTI-CLEANH2-2023-04-01: Development and validation of high power and impurity tolerant fuel cell systems ready to run on industrial quality dry hydrogen
ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 18-04-2023.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Hace más de 20 mes(es) del cierre y aún no tenemos información sobre los proyectos financiados, no parece que se vaya a publicar esta información.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines.

Projects results are expected to contribute to all of the following outcomes:

Support industrial heavy-duty applications that have considerable potential for CO2 emission reduction by utilisation of green hydrogen. Specifically, cold ironing (idling) of ships and ground power supply in ports are potential use cases in line with the proposed activity.Support the EU industry to establish... ver más

ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines.

Projects results are expected to contribute to all of the following outcomes:

Support industrial heavy-duty applications that have considerable potential for CO2 emission reduction by utilisation of green hydrogen. Specifically, cold ironing (idling) of ships and ground power supply in ports are potential use cases in line with the proposed activity.Support the EU industry to establish first value chains for hydrogen use in stationary, port and aviation infrastructure (including maritime and heat re-use for other applications) providing a nucleus for expansion to other areas.Prepare the ground for development of commercial / industrial scale combined heat and power (CHP) unit(s) and/or prime power unit(s) from EU suppliers (100 kWe – 1 MWe);Support the demonstration of the deployment of the next generation of commercial/industrial scale fuel cell CHP and/or prime power units from EU suppliers. The project results are expected to contribute to the following objectives and KPIs of the Clean Hydrogen JU SRIA:

Reduction of CAPEX and TCO of stationary fuel cells of all sizes and end use applications for cold ironing and ground power supply addressed by the current Call;Preparation and demonstration of the next generation of fuel cells for stationary applications able to run under 100% H2 and other H2-rich fuels whilst retaining high performance.Specifically, the following KPIs are expected to be reached: Electrical efficiency of the system 52% (LHV) at nominal power at Beginning of Life (BoL);Total system power degradation of 0.4% at rated power measured over at least 1,000 hours of continuous operation at nominal operating conditions;98% availability of the system during whole testing period cumulating ≥ 5,000 operating hours;Warm start time and switching between full and part load operation in 10 minutes;Targeted capital production system costs based on 100 MWe/annum production volume of 2,000 €/kWe; Non-recoverable platinum group metals (especially in electrodes) < 0.07 gr/kWe, if platinum group metals are present;Improvement of flexibility of systems in operation in particular with reversible fuel cells and integration with thermal storage.
Scope:EU is a world leader in fuel cell technology. Fuel cells “made in Europe” have undergone a successful development and the different types of FC driven devices, mainly in the power range up to 20 kWe, are on the way to deployment in multiple stationary power markets. The EU automotive industry is on the cutting edge of development of hydrogen fuelled heavy duty vehicles, which however are operated with high purity hydrogen and have thus less requirements on longevity.

Development of high power range fuel cell systems projects CISTEM[1], DEMOSOFC[2], ComSos[3], GRASSHOPPER[4]) as well as fuel flexibility towards the blends with hydrogen (project SO-FREE[5]) have been already addressed by previous EU funded projects paving the way for this actual next step : efficient and reliable high power output systems operating on industrial quality hydrogen. The coming “green” hydrogen economy however, requires highly efficient and flexible power generators in the power range 100 kW to 1 MW and that are able to operate with industrial quality dry hydrogen (95% pure). The generators in this power range are required for decarbonisation of maritime, aviation and other sectors, including the energy supply for critical infrastructure (prime power), charging stations for local electrical vehicle fleets, and idling, cold ironing, and ground operation.

This topic aims to bridge the power gap between small stationary and MW installations, by developing and validating a building block in the shape of a renewable hydrogen fuelled fuel cell system (of at least 100 kW), which can be customised for various applications, have a modular design and be impurity tolerant. The duration of the validation should be at least 5,000 hours. This building block should be able to operate at any location having access to any renewable hydrogen supply sources underground storage facilities initially used for natural gas storage, natural gas grid enabled to transport hydrogen as well as dedicated hydrogen grid. Moreover, the durable and flexible (full and partial load) operations of a ≥ 100 kW fuel cell system with industrial quality dry hydrogen (95% pure) should be also explored. Ability of operation on a second type of fuel or hydrogen blends may be included too. The validation should be performed for use case cold ironing or ground power supply at the site, where industrial quality dry hydrogen fuel without blending is available.

The following activities should be within the scope of this topic:

Hydrogen fuelled system design and development utilising existing fuel cell stack manufacturing technologies;Analysis of impurities in hydrogen coming from renewable hydrogen generators, storage and other sources (expected impurities to be considered are CO, odorants, CH4, N2, CO2, ethane and propane with total content up to 5%) and development of impurity-tolerant system;Quantification of degradation in fuel cells and BoP components, and the effect of operation parameters on degradation at different impurity level and operational cycles;Risk assessment of safety aspects in relation to the future certification of the system and techno-economical assessment for a selected application;System operation with commercially available and affordable hydrogen with major impurities/contaminants including state of health monitoring;Dynamic modelling of system performance on hydrogen and hydrogen blends (if reasonable for the application selected) and system dynamic load and transient behaviour operation according to the end-user load profile(s) for selected application(s). Efficient heat extraction and re-use may be addressed to increase total system efficiency. The utilisation of existing but not commercially available single stack with considerably increased power output, robustness etc. in comparison to the state-of-the-art technology (e.g. 20 kWe for SOFC, 120 kWe for PEMFC) may be considered as a cost-effective path to higher power output units in parallel to utilisation of commercially available stacks.

Extraction of hydrogen from different hydrogen carriers is not in the scope of this topic. Consortia are expected to gather comprehensive expertise from the EU research and industrial community to ensure broad impact by addressing the abovementioned items. A participation of end user(s) for the selected system application is expected.

Proposals are expected to address sustainability and circularity aspects.

Activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with JRC (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[6] to benchmark performance and quantify progress at programme level.

Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.

The JU estimates that an EU contribution of maximum EUR 4.00 million would allow these outcomes to be addressed appropriately.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2023 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis.


Specific Topic Conditions:Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.




[1]https://cordis.europa.eu/project/id/325262

[2]https://cordis.europa.eu/project/id/671470

[3]https://cordis.europa.eu/project/id/779481

[4]https://cordis.europa.eu/project/id/779430

[5]https://cordis.europa.eu/project/id/101006667

[6]https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: *Presupuesto para cada participante en el proyecto
Requisitos técnicos: ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines. ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weather or seasonal conditions. Fuel cells are known as the most efficient energy conversion devices, outperforming the conventional power sources. Hydrogen and natural gas-powered fuel cell systems have reached high-level TRL and demonstrated reliable durability in operation. If hydrogen is generated from renewable energy sources, then the fuel cells proposition is unique, as they are the most efficient technology able to produce clean energy with zero emissions. Going up to the MW scale, fuel cells generate power with the highest efficiencies offering a clean and near-silent alternative to conventional solutions such as combustion engines.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea pero en los últimos 6 meses la línea ha concecido
Total concedido en los últimos 6 meses.
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2023-1 Development and validation of high power and impurity tolerant fuel cell systems ready to run on industrial quality dry hydrogen ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weat...
Sin info.
HORIZON-JTI-CLEANH2-2023-05-03 Pre-Normative Research on the determination of hydrogen releases from the hydrogen value chain
en consorcio: ExpectedOutcome:The EU’s Hydrogen Strategy[1], REPowerEU[2] and other relevant European initiatives, clearly recognise clean hydrogen and it...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-07-02 Increasing the lifetime of electrolyser stacks
en consorcio: ExpectedOutcome:Hydrogen can be used as a feedstock, a fuel, an energy carrier in electrolyser technologies, and thus has many possible appl...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-03-01 Real environment demonstration of Non-Road Mobile Machinery (NRMM)
en consorcio: ExpectedOutcome:Internal combustion engines (ICEs) in Non-Road Mobile Machinery[1] (NRMM) (e.g. diesel or gasoline fuelled) significantly co...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-01 Innovative electrolysis cells for hydrogen production
en consorcio: ExpectedOutcome:Water electrolysis for hydrogen production is a mature and well-established technology with major industrial deployments sin...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-07 Hydrogen use by an industrial cluster via a local pipeline network
en consorcio: ExpectedOutcome:Renewable hydrogen offers industry the means to decarbonise thermal and chemical processes that currently rely on fossil fue...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-02 Innovative Solid Oxide electrolysis cells for intermediate temperature hydrogen production
en consorcio: ExpectedOutcome:Large scale sustainable hydrogen production is necessary to implement hydrogen as an energy vector in a future decarbonised...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-06 Valorisation of by-product O2 and/or heat from electrolysis
en consorcio: ExpectedOutcome:Large scale economically viable hydrogen production is necessary to implement the ambition of the “Hydrogen Strategy for a c...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-05 Waste to Hydrogen demonstration plant
en consorcio: ExpectedOutcome:The sustainable wastes management in Europe is an emerging issue of the circular economy due to the restrictions given by EU...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-03-03 Ultra-low NOx combustion system for aviation
en consorcio: ExpectedOutcome:The use of hydrogen as an aviation fuel allows to eliminate the direct CO2 emissions from aircraft engines completely and th...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-06-01 Large-scale Hydrogen Valley
en consorcio: ExpectedOutcome:A Hydrogen Valley typically require a multi-million EUR investment and cover all necessary steps in the hydrogen value chain...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-06-02 Small-scale Hydrogen Valley
en consorcio: ExpectedOutcome:A Hydrogen Valley typically require a multi-million EURO investment and cover all necessary steps in the hydrogen value chai...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-07-01 Advanced materials for hydrogen storage tanks
en consorcio: ExpectedOutcome:For hydrogen, as well as its derivatives, to be a truly sustainable energy vector and part of a future sustainable energy sy...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-05-02 European Hydrogen Academy
en consorcio: ExpectedOutcome:The European Commission is placing skills at the heart of the policy agenda, steering investment in people and education and...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-04-02 Research on fundamental combustion physics, flame velocity and structure, pathways of emissions formation for hydrogen and variable blends of hydrogen, including ammonia
en consorcio: ExpectedOutcome:Hydrogen is a potential enabler of a low-carbon economy and can be a key instrument for the European Green Deal and the rece...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-02-01 Large-scale demonstration of underground hydrogen storage
en consorcio: ExpectedOutcome:Large-scale hydrogen storage has the potential to enable the integration of intermittent renewable energy sources in the gas...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-02-02 Pre-Normative Research about the compatibility of transmission gas grid steels with hydrogen and development of mitigation techniques
en consorcio: ExpectedOutcome:This topic is aimed at accelerating the deployment of a safe, flexible, and efficient hydrogen grid by repurposing part of t...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-02-05 Demonstration of LH2 HRS for Heavy Duty applications
en consorcio: ExpectedOutcome:The topic aims to develop and demonstrate the technological foundations of large LH2 refuelling stations for the heavy-duty...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-03-02 Development of a large fuel cell stack for maritime applications
en consorcio: ExpectedOutcome:Hydrogen as fuel for the maritime sector could be pivotal to foster global maritime decarbonisation as it has significant ad...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-04-01 Development and validation of high power and impurity tolerant fuel cell systems ready to run on industrial quality dry hydrogen
en consorcio: ExpectedOutcome:Hydrogen offers a unique chance to decarbonise the power generation and heating sectors reliably and independently from weat...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-04-04 Hydrogen for heat production for hard-to-abate industries (e.g. retrofitted burners, furnaces)
en consorcio: ExpectedOutcome:When produced with renewable or low-carbon energy sources, hydrogen represents a unique opportunity for the decarbonisation...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-04-03 Retrofitting of existing industrial sector natural gas turbomachinery cogeneration systems for hydrogen combustion
en consorcio: ExpectedOutcome:In the gas transmission systems, gas turbines in simple and combined cycles, can achieve a significant reduction of atmosphe...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-02-04 Demonstration of high pressure (500-700 bar) supply chain
en consorcio: ExpectedOutcome:In order to contribute to the 2030 Climate plan and Green Deal, it is of the utmost importance to improve the Gaseous Hydrog...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-03 Advances in alkaline electrolysis technology
en consorcio: ExpectedOutcome:At present, Europe has an industrial leadership on electrolyser technologies with about two thirds of main players globally....
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-02-03 Novel insulation concepts for LH2 storage tanks
en consorcio: ExpectedOutcome:An important element of the European Hydrogen Strategy is to support the deployment of LH2 for heavy duty applications and t...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-05-01 Product environmental footprint pilot for a set of FCH product categories
en consorcio: ExpectedOutcome:Environmental sustainability of FCH systems is a key requirement in the path towards a hydrogen economy, with important effe...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2023-01-04 Photoelectrochemical (PEC) and/or Photocatalytic (PC) production of hydrogen
en consorcio: ExpectedOutcome:Photo(electro)chemical systems have been identified as one of the promising technologies to meet long-term hydrogen-producti...
Cerrada hace 1 año | Próxima convocatoria prevista para el mes de