Zero CO2 cement concept evaluated with novel Nuclear Magnetic Resonance NMR
The production of cement is predicted to account for 25% of anthropogenic CO2 emissions by 2025. There is a need to produce novel reduced CO2 cement materials to reduce global carbon emissions. This project aims to characterise a...
The production of cement is predicted to account for 25% of anthropogenic CO2 emissions by 2025. There is a need to produce novel reduced CO2 cement materials to reduce global carbon emissions. This project aims to characterise a novel silicate glass material for the production of reduced CO2 cement. The novel silicate glass utilises nanoscale phase separations to enhance the reactivity. The goal of this work is two fold: first, to systematically study the tuneability of the reactivity and nanoscale phase separations in the silicate glass and second, to characterise the glass and cement samples with advanced nuclear magnetic resonance (NMR) methods. First, enhanced reactivity of glasses has previously been observed but has not been systematically studied. The composition of the silicate glass will be changed to study the tuneability of the reactivity and phase separations. The studies will be conducted using standard experiments such as solid state NMR for studying the chemical bonding and scanning electron microscopy (SEM) for visualising phase separations. The results of these studies will contribute to knowledge in glass science and produce a reduced CO2 cement material. Second, the glass and cement will be studied with advanced NMR methods. NMR is a research tool that has previously proven successful in studying the pore structures of glasses and cements. This proposal will utilise breakthroughs in NMR technology, ultrafast Laplace NMR (LNMR) and hyperpolarisaton, to gain further insight into the microstructure of samples. Ultrafast LNMR enhances the time sensitivity of LNMR scans by 2-4 magnitudes and reduces scan time by 1-2 orders of magnitude. Hyperpolarisation enhances the sensitivity of NMR scans by 2-5 orders of magnitude. Together these methods will be used to enhance the time resolution and sensitivity of NMR methods. The results of these studies will produce new NMR methodology and provide novel data in glass and cement samples.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.