Waveguide Raman Spectroscopy for Polar Iron Sensing
The polar oceans are hotspots for carbon cycling and burial. The coastal phytoplankton populations bloom provided by the iron, the main nutrient in polar waters, surging from the subglacial water systems. Retreating glaciers cause...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2019-005919-P
ESPECTROMETRO DE RELACIONES ISOTÓPICAS DE ALTA PRECISIÓN
149K€
Cerrado
EQC2018-004452-P
Adquisición de Espectrómetro de masas con analizador de masa...
448K€
Cerrado
UNCA15-CE-3093
Adquisición de un Cromatógrafo de Exclusión por tamaño/MS pa...
226K€
Cerrado
EQC2018-004088-P
Dotación de un laboratorio de biogeoquímica marina con unida...
304K€
Cerrado
UNLC08-1E-015
SAI-2/2008:Espectrómetro de Masas de Relaciones Isotópicas
245K€
Cerrado
Duración del proyecto: 28 meses
Fecha Inicio: 2024-04-03
Fecha Fin: 2026-08-31
Líder del proyecto
NORSK POLARINSTITUTT
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
211K€
Descripción del proyecto
The polar oceans are hotspots for carbon cycling and burial. The coastal phytoplankton populations bloom provided by the iron, the main nutrient in polar waters, surging from the subglacial water systems. Retreating glaciers cause uncertainty to the future of the iron flux flowing into the oceans and, therefore, it is unclear how the warming climate impacts the carbon cycle in polar areas. However, methods for on-site in-situ monitoring that could gain sufficient temporally and spatially resolved information on the iron behaviour in glacial hydrological systems are either unsatisfactory or cumbersome.
The ambitious aim is to develop an optical measurement technique to monitor and quantify dissolved iron in glacial meltwaters. The objectives are to (i) introduce Shifted Excitation Raman Spectroscopy into on-chip waveguide Raman sensing to develop a portable but sensitive measurement device, and (ii) create an identification and calibration model that can quantify dissolved iron in glacial waters. The expected result is to establish an optical method that enable fast reagent free online monitoring of dissolved iron in glacial meltwaters that can be, in future work, made into a compact on-chip format.
Realization of the in-situ capable Raman sensors will enable collection of extensive data sets of meltwaters in the thawing polar regions. The data will help to quantify their impact on the polar carbon cycle and constrain climate models. The developed Raman sensor can be further applied on various environmental sensing needs, such a monitoring of agronutrient runoff to water systems. From my personal perspective, the obtained research experience and skills will help me to establish a career path on the field of environmental sensing that I am passionate about. The fellowship will give an opportunity to expand my environmental research network to span over the Nordic region and drive border-crossing experimental research of the carbon cycle and the climate change.