Vulcan, the Roman god of blacksmithing, was revered in Europe since the Iron Age (1200-500 BC) for a powerful skill: controlling the macroscopic properties of metals (strength, ductility, toughness). To this day, thermal treatment...
Vulcan, the Roman god of blacksmithing, was revered in Europe since the Iron Age (1200-500 BC) for a powerful skill: controlling the macroscopic properties of metals (strength, ductility, toughness). To this day, thermal treatments such as annealing - cycles of high temperatures, alternated with slow cooling - remain an essential tool of material science. However, Vulcan’s traditional powers forge monolithic, static, and passive materials, and are laughably blunt instruments when compared to living materials, which dynamically reconfigure, repair, and rebuild themselves. Living systems provide proof-of-concepts for what can be achieved: assembling functional materials from elementary blocks that consume fuel.
VULCAN: matter, powered from within, takes forging into the modern age, injecting energy directly through active agents present in the materials. It is experiment-driven and bottom-up, establishing novel experimental strategies to fabricate materials powered from within, with phases and structures that cannot be achieved via thermal treatments, and present non-conventional mechanical and rheological properties (self-healing, odd viscosities). The proposal notably aims to control the phase diagram of matter with spatiotemporal modulation of activity of the bath. We will devise an active bath of swimming bacteria to assemble macroscopic and 3D colloidal crystals and gels [Objective 1], with structures and at scales that cannot be achieved thermally. In parallel, we will devise exotic condensed phases of matter: 2D liquids of spinners and networks of active beams [Objective 2], made from large numbers of autonomous micromachines built from light-activated colloids. This is uncharted territory and an ambitious and high-risk goal, fueling VULCAN’s lasting impact – tearing down the boundary between Active Matter and Materials Science - and opening the path to a new class of materials, powered from within, with applications in (bio)engineering and photonics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.