Visualizing the Conformational Dynamics of Proteins by Time Resolved Electron Mi...
Visualizing the Conformational Dynamics of Proteins by Time Resolved Electron Microscopy
The function of many proteins involves large-amplitude domain motions that occur on a timescale of microseconds to millisecond. In the absence of tools to directly observe these dynamics, our understanding of the function of prote...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NANOMRI
Three dimensional Magnetic Resonance Imaging at Molecular Re...
2M€
Cerrado
CVM-EM-PALM
Computing the structure and dynamics of protein assemblies i...
166K€
Cerrado
PID2019-106801GB-I00
MICROSCOPIA DE FUERZAS BIMODAL PARA CARACTERIZAR CON RESOLUC...
248K€
Cerrado
EQC2019-006605-P
Adquisición de un microscopio confocal de superresolución pa...
360K€
Cerrado
Nano-MRI
QUARTERNARY STRUCTURE IMAGING WITH NANO MAGNETIC RESONANCE I...
185K€
Cerrado
3D-Xist
3D structure of the long non coding RNA Xist by complementar...
183K€
Cerrado
Información proyecto ProteinDynamics
Duración del proyecto: 72 meses
Fecha Inicio: 2017-08-30
Fecha Fin: 2023-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The function of many proteins involves large-amplitude domain motions that occur on a timescale of microseconds to millisecond. In the absence of tools to directly observe these dynamics, our understanding of the function of proteins is necessarily incomplete and must frequently rely on extrapolation from known static structures. Here, the implementation of real-time imaging of single particle dynamics in liquid phase is proposed with both microsecond time resolution as well as near-atomic spatial resolution. The experimental approach builds on several recent technological advances, namely the advent of Time-Resolved (Four-dimensional) Electron Microscopy, graphene liquid cell technology, and direct electron detection cameras, which are combined with established single-particle reconstruction techniques in cryo-Electron Microscopy. Visualizing the conformational dynamics of proteins will fundamentally advance our understanding of these nanoscale machines and has the potential to greatly benefit biomedical applications.