Computing the structure and dynamics of protein assemblies in living cells by co...
Computing the structure and dynamics of protein assemblies in living cells by coupling sub diffraction fluorescence microscopy with single particle reconstruction application to viral capsids
Electron microscopy (EM) is an invaluable tool for investigating the nanometer-scale organization of molecular assemblies such as viruses, but is restricted to dead cells, does not readily label targeted proteins, and is prone to...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CVM-EM-PALM
Líder del proyecto
INSTITUT PASTEUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
166K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Electron microscopy (EM) is an invaluable tool for investigating the nanometer-scale organization of molecular assemblies such as viruses, but is restricted to dead cells, does not readily label targeted proteins, and is prone to fixation artefacts. Recently developed methods to break the diffraction limit in optical microscopy have the potential to resolve protein arrangements in living cells. However, their resolution is currently restricted to ~20-30 nm, still an order of magnitude removed from EM, and dynamic super-resolution imaging remains challenging. Here, we aim to reconstruct the protein arrangements of molecular structures at resolutions better than 20 nm by harnessing the power of statistics, i.e. by aggregating images from hundreds or thousands of copies of nearly-identical structures and when possible by exploiting their symmetry. To do this, we will adapt computational methods of single particle reconstruction from electron microscopy to super-resolution optical microscopy. After validation on synthetic data, we will test and apply these methods to nuclear pores and adenovirus capsids. These examples have been chosen because of their geometric features that work well with our approaches. Particularly, we are interested in obtaining novel insight into the dynamic structural changes occurring at the nuclear pore complex during active transport. Furthermore, we aim to decipher the sequence of events during viral capsid formation. This work has the potential to further push the resolution of optical microscopy towards that of electron microscopy for the analysis of ordered molecular assemblies. If successful, our project will open the door to structural investigations in living cells, including the assembly process of viral particles, or the plasticity of the nuclear pores and its role in nucleo-cytoplasmic transport.