Virtual experimental toolbox for 3D 4D recrystallization
Although microstructural characterization techniques are advancing, they are still inadequate to explain the complex behavior of recrystallization: Unexpected local grain boundary migration may relate to local variations in the de...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto VETRex4D
Duración del proyecto: 41 meses
Fecha Inicio: 2021-03-24
Fecha Fin: 2024-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Although microstructural characterization techniques are advancing, they are still inadequate to explain the complex behavior of recrystallization: Unexpected local grain boundary migration may relate to local variations in the deformation microstructure, but 3D quantification is needed. Newer studies suggest that residual stress may affect the boundary migration, but consensus is lacking. Additive manufacturing is becoming popular. Here the formation of pores/voids are observed but their effect on boundary migration is totally unexplored. Various processes and materials parameters are coupled and acting simultaneously, their individual effects cannot be separated experimentally. A novel paradigm is required to quantify the above-mentioned new and critical aspects with the larger longer-term goal to improve properties and design novel materials.
I want to show that a virtual experimental toolbox for 3D/4D recrystallization is the way forward to remove the bottleneck. In this toolbox, for the first time ever, quantitative phase-field simulations will be directly coupled with 4D X-ray Microscopy (4DXRM) experimental data. The necessary steps to achieve my goals:
1) Develop expertise in 4DXRM and learn to design the critical experimental studies (supervisor is expert).
2) Develop quantitative 3D phase-field models to capture complex behavior of recrystallization and implementation it in MOOSE Framework software for large-scale simulations (PI is expert)
3) Coupling of 4DXRM data with MOOSE Framework (in collaboration).
The vision is that the newly developed virtual experimental toolbox can be used by experimentalists and scientists in industry with minimal training.
This fellowship is going to make me a unique expert in the field of phase-field model development and experienced in 4DXRM characterization, which will make me employable at leading European research institutions.