Deformation and Recrystallization Mechanisms in Metals
Combining strength and formability, metals are indispensable for modern life. Their properties firmly depend on processing, typically involving a series of plastic deformation steps that introduce defects deep below the surface. O...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2015-69752-P
EFECTO DE LA DEFOMACION EN LA REGION INTERCRITICA EN LA MICR...
107K€
Cerrado
DISCO-DATA
Hard work, plastic flow: a data-centric approach to dislocat...
1M€
Cerrado
FJCI-2016-29660
Multiscale modelling and characterization of structural meta...
50K€
Cerrado
MAT2008-06749-C02-01
OPTIMIZACION MICROESTRUCTURAL EN ACEROS BAINITICOS MODERNOS...
77K€
Cerrado
MESOPHYSDEF
Mesoscopic framework for modeling physical processes in mult...
100K€
Cerrado
MICROMECH
Microstructure Based Material Mechanical Models for Superall...
829K€
Cerrado
Información proyecto D-REX
Duración del proyecto: 62 meses
Fecha Inicio: 2023-10-25
Fecha Fin: 2028-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Combining strength and formability, metals are indispensable for modern life. Their properties firmly depend on processing, typically involving a series of plastic deformation steps that introduce defects deep below the surface. Our current understanding of the evolution of defect structures is phenomenological, and strongly limited by characterization tools being either limited to surfaces or not available at deformation levels relevant for metal processing.
D-REX strives to radically improve our understanding of structure-property relations in plastic deformation and thermal annealing of metals by visualising and quantifying the structural dynamics in 3D with 100nm resolution – within bulk metals. This will be achieved by developing a unique multi-scale full-field X-ray diffraction microscope enabling time-resolved 3D strain and orientation mapping. Using pink beam diffraction imaging, the time resolution of the microscope is expected to be ~100× better than the existing diffraction imaging methods. The unique experimental results will be used to guide and validate crystal plasticity and phase field models.
D-REX opens a new way to address the unresolved questions of how metals get stronger during deformation and how this affects the annealing processes. For the first time, industrially-relevant deformation levels can be quantitatively and systematically mapped in real-life conditions. This will not only lead to a new scientific understanding, but also provide unprecedented access to critical material parameters from the bulk that will refine material models. More broadly, the novel multi-scale methodology and systematic approach of D-REX will be a game-changer for studies of many hierarchically-ordered crystalline materials.