Vertices of simple modules for the symmetric and related finite groups
This project aims to study representations of symmetric groups, alternating groups and other related finite groups, over non-zero characteristic. These representations are far from being semisimple, and many basic problems, like f...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QAffine
Representations of quantum affine algebras and applications
1M€
Cerrado
RTQASL
Representation theory of quantum algebras and their semi cla...
231K€
Cerrado
STABREP
Geometric Models for Calabi Yau Algebras and Homological Mir...
213K€
Cerrado
HARG
Harmonic analysis on reductive groups
2M€
Cerrado
B10NonAbBlcksETH
Representation Theory of Blocks of Group Algebras with Non a...
171K€
Cerrado
CAT REPTH
Categorification in Representation Theory
45K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This project aims to study representations of symmetric groups, alternating groups and other related finite groups, over non-zero characteristic. These representations are far from being semisimple, and many basic problems, like finding the irreducible representations - that is simple modules - are not solved in general. Therefore one needs to find and understand invariants of modules. We will focus on the distiguished classes of Specht modules and simple modules and will investigate vertices, sources, and complexity. These encapsulate local and group theoretic features on the one hand, and large-scale homological behaviour on the other hand. Spectacular new developments from Lie theory have opened up completely new perspectives, and we will combine the classical approach of G.D. James, the new methods originating in Kac-Moody algebras and quantum groups, and work by Kleshchev , Lascoux/Leclerc/Thibon, Ariki, Grojnowski, and Chuang/Rouquier.