Representations of quantum affine algebras and applications
Quantum affine algebras are important examples of Drinfeld-Jimbo quantum groups. They can be defined as quantizations
of affine Kac-Moody algebras or as affinizations of finite type quantum groups (Drinfeld Theorem).
The represent...
Quantum affine algebras are important examples of Drinfeld-Jimbo quantum groups. They can be defined as quantizations
of affine Kac-Moody algebras or as affinizations of finite type quantum groups (Drinfeld Theorem).
The representation theory of quantum affine algebras is very rich. It has been studied intensively during the past twenty five
years from different point of views, in particular in connections with various fields in mathematics and in physics, such as
geometry (geometric representation theory, geometric Langlands program), topology (invariants in small dimension),
combinatorics (crystals, positivity problems) and theoretical physics (Bethe Ansatz, integrable systems).
In particular, the category C of finite-dimensional representations of a quantum affine algebra is one of the most studied
object in quantum groups theory. However, many important and fundamental questions are still unsolved in this field. The aim of the research project is to make significant advances in the understanding of the category C as well as of its applications in the following five directions. They seem to us to be the most promising directions for this field in the next years :
1. Asymptotical representations and applications to quantum integrable systems,
2. G-bundles on elliptic curves and quantum groups at roots of 1,
3. Categorications (of cluster algebras and of quantum groups),
4. Langlands duality for quantum groups,
5. Proof of (geometric) character formulas and applications.
The resources would be used for the following :
(1) Hiring of 2 PhD students (in 2015 and 2017).
(2) Hiring of 2 Postdocs (in 2015 and 2017).
(3) Invitations and travel for ongoing and future scientific collaborations.
(4) Organization of a summer school in Paris on quantum affine algebras.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.