Personal data are constantly collected and shared via web cites, mobile applications like social networking and navigation apps, smart home devices like smart TVs and voice assistants, and IoT devices. Personal data are then monet...
Personal data are constantly collected and shared via web cites, mobile applications like social networking and navigation apps, smart home devices like smart TVs and voice assistants, and IoT devices. Personal data are then monetized to support targeted advertising, personalized services, differential pricing, risk assessment and influencing public opinion. This happens at the expense of privacy and fairness for individuals and the society. To address this, governments around the world are enacting privacy laws, e.g. GDPR (European Union) and CCPA (California). Unfortunately, since profits can be at odds with privacy considerations, industry players have an incentive to circumvent the law. What is more, the technical concepts and associated tools developed so far and used by the laws are neither strong enough nor wide enough in scope. Last, users themselves are conflicted: they enjoy the plethora of personalized services but are alarmed by the loss of their privacy. In this proposal we advocate for a user-centered approach to privacy where each user may dictate how much privacy is willing to trade in exchange for services. We will systematically investigate the efficiency of state of the art privacy mechanisms, both formal, e.g. differential and information theoretic privacy, and data-driven, e.g. generative adversarial privacy, in terms of how well they protect data privacy while maintaining some utility of the obfuscated data and the services that depend upon them. We will do so not only via analysis but also via real world experiments in the context of applications at the forefront of personal data privacy leaks. We will also introduce novel privacy tools for real world use cases which allow users to select the desired level of data privacy and utility of service. Use cases of interest include mobile smartphone data leaks, online tracking via web browsing and apps usage, and user profiling within popular apps like video sharing.ver más
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.