Untying the knot of creep and fatigue behaviour of UHPC for sustainable design o...
Untying the knot of creep and fatigue behaviour of UHPC for sustainable design of infrastructures enabling the carbon neutrality transition
Concrete, as the most widely used construction material, is responsible for about 7% of global energy-related CO2 emissions. Addressing this environmental challenge within the construction sector necessitates urgent development an...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BIA2016-78460-C3-2-R
SOSTENIBILIDAD DE LAS ESTRUCTURAS DE HORMIGON DE MUY ALTO RE...
109K€
Cerrado
BIA2016-78460-C3-1-R
BASES PARA EL DISEÑO DE ESTRUCTURAS SOSTENIBLES DE HORMIGON...
132K€
Cerrado
SMASH
Smart MAterial System to enHance the service life of reinfor...
173K€
Cerrado
BIA2013-48352-P
COMPORTAMIENTO EN FRACTURA Y FATIGA TERMO-MECANICA DE ELEMEN...
79K€
Cerrado
BIA2017-85657-R
HORMIGONES SOSTENIBLES AUTOCOMPACTANTES DE ALTAS PRESTACIONE...
91K€
Cerrado
PID2021-128616OB-I00
DISEÑO DE HORMIGONES NANOESTRUCTURADOS CON CONTENIDO REDUCID...
91K€
Cerrado
Información proyecto InCreeGuIng
Duración del proyecto: 34 meses
Fecha Inicio: 2024-03-21
Fecha Fin: 2027-02-15
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
173K€
Descripción del proyecto
Concrete, as the most widely used construction material, is responsible for about 7% of global energy-related CO2 emissions. Addressing this environmental challenge within the construction sector necessitates urgent development and adoption of multi-beneficial materials characterized by low carbon emissions, superior durability, and excellent mechanical properties. Ultra-high-performance concrete (UHPC) emerges as such a material, offering a 26% reduction in carbon emissions and a 24% cost advantage according to comparative LCA and LCC analysis on benchmark structures. UHPC is the ideal candidate material for broad application, particularly in construction of new and retrofitting existing aging infrastructure subjected to cyclic and sustained actions, including bridges, tunnel linings, wind turbine towers, roads, and aircraft runways.
However, the lack of knowledge regarding UHPC's long-term performance, including creep and fatigue behaviour, hinders its widespread use in infrastructure projects. The objective of this project is to unlock this critical knowledge gap and develop structural design guidelines aimed at driving the construction sector's transition towards carbon neutrality through the use of high-performance materials that enable us to build better, for longer and employing lower material volumes, which all imply reduced consumption of raw resources and reduced environmental impacts in the short and long term. Employing multiscale experimental tests, multi-physics and mesoscale numerical methods, the project aims to comprehensively characterize and predict UHPC's response to creep and fatigue, and the creep-fatigue coupled effect (cyclic creep).
InCreeGuIng's breakthrough will fill the current knowledge gaps in understanding UHPC's long-term performance. This initiative will enhance Europe's competitiveness in constructing eco-friendly, resilient, and durable infrastructure by providing practical design tools to expedite their widespread adoption.