Innovating Works

BALANCED LETHALS

Financiado
Untangling the Evolution of a Balanced Lethal System
Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carr... Natural selection is supposed to keep lethal alleles (dysfunctional or deleted copies of crucial genes) in check. Yet, in a balanced lethal system the frequency of lethal alleles is inflated. Because two forms of a chromosome carry distinct lethal alleles that are reciprocally compensated for by functional genes on the alternate chromosome form, both chromosome forms – and in effect their linked lethal alleles – are required for survival. The inability of natural selection to purge balanced lethal systems appears to defy evolutionary theory. How do balanced lethal systems originate and persist in nature? I suspect the answer to this pressing but neglected research question can be found in the context of supergenes in a balanced polymorphism – a current, hot topic in evolutionary biology. Chromosome rearrangements can lock distinct beneficial sets of alleles (i.e. supergenes) on two chromosome forms by suppressing recombination. Now, balancing selection would favour possession of both supergenes. However, as a consequence of suppressed recombination, unique lethal alleles could become fixed on each supergene, with natural selection powerless to prevent collapse of the arrangement into a balanced lethal system. I aim to explain the evolution of balanced lethal systems in nature. As empirical example I will use chromosome 1 syndrome, a balanced lethal system observed in newts of the genus Triturus. My research team will: Reconstruct the genomic architecture of this balanced lethal system at its point of origin [PI project]; Conduct comparative genomics with related, unaffected species [PhD project]; Determine gene order of the two supergenes involved [Postdoc project I]; and Model the conditions under which this balanced lethal system could theoretically have evolved [Postdoc project II]. Solving the paradox of chromosome 1 syndrome will allow us to understand balanced lethal systems in general and address the challenges they pose to evolutionary theory. ver más
31/01/2025
1M€
Duración del proyecto: 74 meses Fecha Inicio: 2018-11-13
Fecha Fin: 2025-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-11-13
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITEIT LEIDEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5