Unraveling the Supramolecular Architecture of Molecular Machineries in Adaptive...
To combat daily threats of pathogens and abnormal cells, the human organism features a sophisticated defense mechanism called the adaptive immune system. In broad terms, this intricate mechanism is triggered by specific peptide ep...
To combat daily threats of pathogens and abnormal cells, the human organism features a sophisticated defense mechanism called the adaptive immune system. In broad terms, this intricate mechanism is triggered by specific peptide epitopes presented on molecules of the major histocompatibility complex class I (MHC I), which are scanned by cytotoxic T cells. Intracellular transport, loading, and cell-surface recognition of antigenic peptides on MHC I are orchestrated by machineries, the peptide-loading complex (PLC) and the T cell receptor (TCR) complex. The PLC is composed of multiple subunits, including the antigen translocation unit TAP, the MHC I heterodimer, and several chaperones ensuring that only stable peptide-MHC I molecules are released to the cell surface for decoding by TCR complexes. Ligand binding and the supramolecular organization of TCR complexes are translated into phosphorylation of conserved tyrosine-containing cytosolic sequence motifs that initiate downstream signaling cascades. Based on their incredible efficiency and selectivity, we hypothesize that the biogenesis of MHC I is highly processive and coupled via allosteric networking, and that antigen processing and recognition machineries are compartmentalized by a defined supramolecular organization. However, despite their fundamental importance, these architectural details of the PLC and the TCR, as well as the dynamic networking that is included in the quality control of the endoplasmic reticulum (ER) and receptor signaling processes, remain enigmatic due to their inherent dynamics, low abundance, and complexity.This ambitious proposal will contribute to a long-awaited holistic understanding of the machineries that shape the vertebrate adaptive immunity. The expected findings from this project will be groundbreaking in understanding the hidden processes of epitope selection and reception in human disease.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.