Understanding the identity of the amniotic fluid stem cells
The amniotic fluid surrounds and protects the foetus during development, providing trophic and mechanical support to its growth. This liquid contains a variety of cells shedding from embryonic and extra-embryonic tissues that have...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AmnioticID
Duración del proyecto: 28 meses
Fecha Inicio: 2019-04-11
Fecha Fin: 2021-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The amniotic fluid surrounds and protects the foetus during development, providing trophic and mechanical support to its growth. This liquid contains a variety of cells shedding from embryonic and extra-embryonic tissues that have long been utilised for prenatal diagnosis. In a seminal 2007 article, Professor De Coppi identified in the amniotic fluid, a small population of cells with broad multi-lineage differentiation ability defined as Amniotic Fluid Stem Cells (AFSCs). AFSCs can be isolated, expanded and differentiated during gestation, making them ideal for the development of pre-/perinatal autologous regenerative medicine strategies. In the last decade, a series of studies focused on investigating the therapeutic relevance of the AFSCs for various tissue compartments, such as skeletal and cardiac muscle, lung and liver. However, very little is known about the AFSCs origin, lineage identity and role during human development. This knowledge gaps have relevant impact on these cells' clinical translation and a list of important questions remains to be addressed: Which tissue releases the AFSCs? Are these cells constantly generated, or part of a self-renewing niche? What is the function of the AFSCs during human development? This proposal aims at addressing these questions, by using a combination of next generation sequencing analyses, cell biology assays and in vivo linage tracing approaches. Ultimately defining the origin and identity of the AFSCs will not only increase our knowledge of their physiological role, but will also allow to better direct future studies on their therapeutic implications. Thanks to this project, I will gain a comprehensive, multi-faceted understanding of the biology and regenerative potential of AFSCs. This will open up new research agendas, foster international collaborations and provide me valuable transferrable skills of crucial relevance to develop my independent career, in line with the mission of the Marie Curie action.