Understanding Crystal Polymorph Control in Confinement using In situ TEM
Controlling the polymorph (crystal structure) of crystalline materials is of vital importance to both material science and the pharmaceutical industry. Many crystal polymorphs are difficult to access, however, as polymorph is dete...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NOC2D
Nucleation of Organic Crystals onto 2D materials
2M€
Cerrado
MAT2013-46753-C2-1-P
MATERIALES BIDIMENSIONALES CON PROPIEDADES MODULABLES
133K€
Cerrado
CSIC13-1E-1743
Cámara horno de alta temperatura HTK1200N
61K€
Cerrado
POSINAM
PORE SPACE INVESTIGATION IN NATURAL AND ARTIFICIAL MATERIALS
562K€
Cerrado
EQC2021-007173-P
Laboratorio de caracterización estructural de materiales pol...
704K€
Cerrado
Información proyecto PolyTEM
Duración del proyecto: 23 meses
Fecha Inicio: 2020-03-09
Fecha Fin: 2022-03-08
Líder del proyecto
UNIVERSITY OF LEEDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
225K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Controlling the polymorph (crystal structure) of crystalline materials is of vital importance to both material science and the pharmaceutical industry. Many crystal polymorphs are difficult to access, however, as polymorph is determined by both kinetics and thermodynamics. Recently, it has been observed that precipitation of crystals in confinement often leads to the formation of unusual polymorphs. For example, CaCO3 forms purely as aragonite when it is precipitated in small nano-pores. These observations suggest that confinement could offer a generic route to polymorph control. However, the fundamental mechanisms underlying this confinement effect are poorly understood.
In this project, I will combine in-situ cryogenic transmission electron microscopy (cryoTEM) and liquid phase (LP) TEM to study how confinement effects give rise to polymorph control. In-situ cryoTEM allows detailed structural analysis of snapshots of the nucleation process, while LPTEM enables dynamic, time-resolved analysis with millisecond time resolution. Notably, although these two advanced techniques perfectly complement each other, they have never been combined to study one system.
CaCO3 will form the principal focus of the study, and a graphene pocket (GP) will be used as the confinement system as it not only favours aragonite formation, but is also ideally suited to both cryoTEM and LPTEM studies. The study will reveal how CaCO3 nucleate in the GPs and develop into aragonite, and the role of surface chemistry in this polymorph control process will be investigated. The project will then be extended to functional materials (e.g., TiO2) or drug crystals (e.g., Ritonavir), in order to learn how to use confinement to control polymorph by design. The research will allow us to fully understand the formation of aragonite in nano-sized confinements and more fundamentally, will bridge the gap in knowledge about how crystal polymorph in general is controlled in confinement.