Understanding Copper Zinc Synergy for Carbon Dioxide Hydrogenation
Carbon dioxide (CO2) is a greenhouse gas that is significantly contributing to climate change. In tandem with advances in sequestering carbon, beneficial uses for CO2 are of high societal importance for developing a sustainable fu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2013-43438-R
RETOS EN LA UTILIZACION DE MATERIAS PRIMAS RENOVABLES: SU EF...
185K€
Cerrado
PromSusCat
How a pinch of Salt makes all the Difference for Sustainable...
4M€
Cerrado
PID2021-126076NB-I00
OPTIMIZACION COMPUTACIONALMENTE ASISTIDA DE NUEVOS CATALIZAD...
169K€
Cerrado
CTQ2013-48280-C3-3-R
DESARROLLO DE NUEVOS MATERIALES CATALITICOS PARA LA VALORIZA...
263K€
Cerrado
MEXCAT
Metal EXsolved CATalysts for the CO2 valorisation to methano...
173K€
Cerrado
RTI2018-093871-B-I00
DESARROLLO DE CATALIZADORES Y SOPORTES PARA PROCESOS DE ALMA...
176K€
Cerrado
Información proyecto CuZnSyn
Duración del proyecto: 30 meses
Fecha Inicio: 2020-03-13
Fecha Fin: 2022-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Carbon dioxide (CO2) is a greenhouse gas that is significantly contributing to climate change. In tandem with advances in sequestering carbon, beneficial uses for CO2 are of high societal importance for developing a sustainable future. One attractive use of CO2 is in its conversion to energy dense fuels (green energy vectors). One such fuel is methanol, made from CO2 via hydrogenation in conjunction with a multimetallic catalyst. The current best industrial (heterogeneous) catalyst incorporates copper and zinc-oxide nanoparticles with an alumina support. A special synergy is observed between the copper (active site) and zinc (reaction promoter), but these species and their connection is poorly defined and remains debated.
This project aims to isolate proximal copper and zinc centres, the fundamental building block for the construction of critical copper–zinc interfaces, within a well-defined, and highly tuneable ligand framework. Once isolated, the binding, activation and interconversion of key intermediates along the CO2 hydrogenation pathway will be meticulously analysed.
Work package 1 involves the synthesis and characterisation of a series of 12 ligands that encompass a range of stereo-electronic profiles, and subsequent isolation of CuZn complexes using these ligands. Work package 2 will use the complexes to study the activation and interconversion of key intermediates along the CO2 hydrogenation pathway to gain mechanistic understanding. Finally, work package 3 will test the most active complexes as catalysts for the direct hydrogenation of CO2 to methanol.
The combination of my skills (multimetallic systems) and the host groups (mechanistic studies) make achieving the project aims realistic. The knowledge harnessed from gaining deep mechanistic understanding of the synergy between copper and zinc during CO2 hydrogenation will be invaluable in developing the next generation of catalysts for methanol production, adding value to a deleterious waste streams.