Uncovering Phonon Dynamics by Advanced Raman Techniques
In many technologies, heat management becomes the bottleneck for the next generation development. Phonons are mechanical vibrations of the atomic lattice that are responsible for the transmission of heat in many relevant materials...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TOPHONICALS
TOPological pHONonics In Crystalline materiALS
161K€
Cerrado
PID2021-122322NB-I00
INVESTIGACION PARA UN MODELO MICROSCOPICO-MACROSCOPICO UNIFI...
97K€
Cerrado
Smartphon
Small and nano scale soft phononics
2M€
Cerrado
FIS2015-70862-P
INGENIERIA DE FONONES PARA LA GESTION TERMICA AVANZADA A LA...
130K€
Cerrado
MAT2012-31392
DISEÑO DE LAS RELACIONES DE DISPERSION DE FONONES ACUSTICOS
102K€
Cerrado
MaPWave
Designing Many-Particle Wavefunctions in Mesoscopic Quantum...
231K€
Cerrado
Información proyecto Phonon-ART
Duración del proyecto: 32 meses
Fecha Inicio: 2020-02-20
Fecha Fin: 2022-10-31
Líder del proyecto
UNIVERSITAT BASEL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
203K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In many technologies, heat management becomes the bottleneck for the next generation development. Phonons are mechanical vibrations of the atomic lattice that are responsible for the transmission of heat in many relevant materials, like semiconductors, thus controlling them analogously to photons and electrons is indispensable. Advanced time-resolved Raman spectroscopies enable the extraction of relevant information such as phonon spectra, lifetimes, and relaxation times, all critical to understanding thermal transport through advanced materials. In this project we aim to apply these techniques to solve two important open questions: (i) how to engineer the temperature sensors of the future based on diamond-based materials; and (ii) understanding the underlying physical mechanism responsible for deviations from the macroscopic predictions for nanoscale system, such as hypersonic surface phononic crystals, critical to technological applications. For this purpose, I propose four main objectives to the project. First, implementing an ultrafast time-resolved spontaneous Raman method to access the timescale of the absolute phonon mode population. Second, implementing a time-resolved stimulated Raman spectroscopy technique to explore the coherence of selectively excited phonons. Third, extending this technique to a time-resolved coherent anti-Stokes Raman (CARS) spectroscopy to probe the population dephasing lifetime of the system and energy relaxation time. This project will significantly advance the field of ultrafast, nano, materials and thermal science and will extend European knowledge in two different directions: advancing the current metrology tools by means of a fully developed time-resolved CARS setup at University of Basel, and studying energy flow dynamics in novel materials that will impact both fundamental understanding and technological applications.