UNcertainty quantification and modelling Bias Inhibition by means of an Agnostic...
UNcertainty quantification and modelling Bias Inhibition by means of an Agnostic Synergistic Exploitation of multi-fidelity Data
The UN-BIASED project aims at developing an innovative Scientific Modelling paradigm capable of mitigating potential cognitive biases affecting the modelling process in engineering applications. Nowadays, modelling is mostly a sub...
The UN-BIASED project aims at developing an innovative Scientific Modelling paradigm capable of mitigating potential cognitive biases affecting the modelling process in engineering applications. Nowadays, modelling is mostly a subjective process, strongly driven by the prejudice of the Modeller and anchored to the knowledge of well-determined pre-set physics. In practical applications, this often results into models affected by epistemic uncertainty. Data-driven techniques open the path for the construction of computerized models that are able to learn the physics underlying a complex system from the available data alone, requiring little, if not at all, subjectivity. Interestingly, these tools are generally used to obtain mere predictions and no credit is usually given to the possibility of translating the learned patterns and relations into interpretable theories and hypotheses. I propose to assess the physics learned by data-driven algorithms in terms of compliance with fundamental principles e.g., laws of thermodynamics, and to test them against a priori subjective hypotheses. This will expose differences between the actual experiment and the Modeller’s understanding of it. This allows for inverting the rationale underlying the classical modelling process, from a theory-to-data deductive assessment to a data-to-theory inductive inference. The ultimate goal is to advance the state-of-the-art by crafting a two-way modelling framework combining the hypotheses-driven and the data-driven approaches, to mitigate the consequences of biased modelling choices and improve the knowledge about complex physical systems. The proposed paradigm is not to be intended as a substitution of the classical Scientific Modelling method, but rather as an extension of it. The project is conceived with aerospace applications in mind, but the proposed methodology is straightforwardly applicable to the modelling of any physical problem of interest for the academy or the industry.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.