Ultrahigh throughput protein evolution for polyethylene biodegradation
The build-up of plastic pollution is one of the most pressing environmental concerns. Polyethylene (PE), the most abundantly produced plastic polymer, can persist in nature for over a century. The microbial biodegradation of PE th...
The build-up of plastic pollution is one of the most pressing environmental concerns. Polyethylene (PE), the most abundantly produced plastic polymer, can persist in nature for over a century. The microbial biodegradation of PE that has been observed is slow and inefficient. So far no effort has been undertaken to improve the efficiency of enzymes involved in the biodegradation of PE through directed protein evolution. Standard assays for measuring degradation rates are not sufficiently high-throughput to cover the sequence space required. I propose to use state-of-the-art protein evolution technology to overcome this problem in two ways. First, an ultrahigh-throughput microfluidics based approach, that can associate a given genotype with its phenotype in picoliter sized water-in-oil droplets, will be used to isolate the desired genotypes from a random mutagenesis library. Second, a novel assay for measuring polymer concentration within each droplet based on differential light scattering as the polymer is degraded will assay the PE degradation rate for a given enzyme. These techniques were developed in the research group of the proposed host, Dr. Hollfelder in the Department of Biochemistry at the University of Cambridge. Using these techniques, I will functionally express and evolutionarily optimise a range of PE degrading enzymes in genetically tractable host strains, creating a chassis to investigate the potential of microbial biodegradation as a solution to plastic waste. Secondments at the EBI, UCL and the SME Drop-Tech will convey practical skills in bioinformatics screens and droplet formation. The host group’s experience in enzyme biotechnology and directed protein evolution as well as its extensive modern facilities for microfluidics, next generation sequencing and flow cytometry will synergize with my personal research experience in synthetic, molecular and microbiology to find a multidisciplinary solution to the growing problem of plastic degradation.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.