Innovating Works

TIMP

Financiado
Ultrahigh speed nanometer scale microscopy
Ultrahigh-speed microscopy at Tera-scale frames per second frame-rate is essential for various applications in science and technology. In particular, it is critical for observing ultrafast non-repetitive events, for which the pump... Ultrahigh-speed microscopy at Tera-scale frames per second frame-rate is essential for various applications in science and technology. In particular, it is critical for observing ultrafast non-repetitive events, for which the pump-probe technique is inapplicable. The spatial resolutions of such microscopes is to date limited to the micrometer scale. I propose to develop such microscopes with nanometric resolution. The Tera-scale frames per second frame rate microscopes with nanometric resolution will be based on a new approach for ultrahigh-speed imaging that we recently proposed: time-resolved imaging by multiplexed ptychography (TIMP). In TIMP, multiple frames of the object are recovered algorithmically from data measured in a single CCD exposure of a single-shot ptychographic microscope. The frame rate is determined by the light source (burst of pulses) and it is largely uncoupled from the microscope spatial resolution, which can be sub-wavelength. Also important, TIMP yields movies of both the amplitude and phase dynamics of the imaged object. It is simple and versatile, thus it can be implemented across the electromagnetic spectrum, as well as with other waves. I aim to develop TIMP-based microscopes, in the visible, extreme UV and x-ray spectral regions with Tera-scale frames per second frame rate and nanometric resolution. We will utilize the unprecedented imaging capabilities in applications, including exploring ultrafast phase transitions, ultrafast dynamics in nanostructures, and tracking the spatiotemporal dynamics during passive mode-locking build-up in lasers and Kerr micro-resonators. This program, if successful, will bring the field of imaging into a new era, where ultrafast dynamics of non-repetitive transient complex-valued objects can be viewed at nanometric resolution. ver más
28/02/2025
2M€
Perfil tecnológico estimado
Duración del proyecto: 72 meses Fecha Inicio: 2019-02-28
Fecha Fin: 2025-02-28

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-02-28
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
TECHNION ISRAEL INSTITUTE OF TECHNOLOGY No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5