Tuning emission of charged excitons in two dimensional transition metal dichalco...
Tuning emission of charged excitons in two dimensional transition metal dichalcogenide monolayers
Transition metal dichalcogenide (TMD) monolayers constitute an attractive material platform due to additional degrees of freedom in encoding and processing quantum information. Currently, the use of these degrees of freedom in val...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MaPWave
Designing Many-Particle Wavefunctions in Mesoscopic Quantum...
231K€
Cerrado
FLATLAND
Electron lattice spin correlations and many body phenomena i...
3M€
Cerrado
2D-QuEST
Chemical Structure Photo Physics and Emission Control of Si...
225K€
Cerrado
PID2019-110308GA-I00
FUENTES DE LUZ CUANTICA SINTONIZABLES EN MATERIALES 2D DE VA...
81K€
Cerrado
OptoTransport
Light enabled transport phenomena in van der Waals heterostr...
191K€
Cerrado
IXIXions
Interlayer exciton interactions and their many-body physics
174K€
Cerrado
Información proyecto 2DCHEX
Duración del proyecto: 27 meses
Fecha Inicio: 2021-03-11
Fecha Fin: 2023-06-30
Líder del proyecto
SYDDANSK UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transition metal dichalcogenide (TMD) monolayers constitute an attractive material platform due to additional degrees of freedom in encoding and processing quantum information. Currently, the use of these degrees of freedom in valleytronics is hampered due to the low valley polarization of the neutral exciton at room temperature. Recently, charged excitons have been demonstrated to exhibit high valley polarization even at room temperature albeit with low quantum yield and have a need for sophisticated charge doping techniques. This action proposes a novel electro-optical interface based on electron doping of TMD monolayers. I suggest to use the electric double layers to control the formation of charged excitons, and to use complex nanoantennas to enhance and collimate generated emission. My goal is to develop a quantum device merging fields of electrochemistry, photonics, plasmonics and TMD materials, giving practical access to new degrees of freedom for future valleytronic applications. The objectives are to demonstrate the exciton charging in TMD monolayers using a custom-built electrochemical cell and to tune electrically charged-exciton emission through the manipulation of the Fermi level, i.e., chemical potential. I aim to use the tuning of emission energy for coupling the charged exciton with a narrow resonance of a complex nanoantenna. This antenna will increase the extraction efficiency by directing the emission of charged excitons and enhancing their generation rate. Furthermore, I aim to explore the chirality of valley polarization and address the emission of charged excitons for their directional coupling with plasmons in high quality wedge waveguides based on crystalline gold micro-flakes. The overarching aim of my action is the development of a novel bright, directional, and electrically tunable quantum emitting device operating at room temperature for future quantum computing and information technologies.