Light enabled transport phenomena in van der Waals heterostructures
Van der Waals heterostructures consisting of atomically thin materials, such as graphene and Transition metal dichalcogenides (TMD), have generated a tremendous amount of excitement in physics over the past decade. Embedding these...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2013-44098-P
INTERACCION FUERTE DE LUZ-MATERIA EN HETEROESTRUCTURAS BIDIM...
15K€
Cerrado
FLATLAND
Electron lattice spin correlations and many body phenomena i...
3M€
Cerrado
RYC2020-030263-I
Magnetotransport and optical phenomena in heterostructure de...
324K€
Cerrado
OPTOvanderWAALS
Optoelectronics with Complex van der Waals Heterostructures
166K€
Cerrado
TuneInt2Quantum
Tunable Interactions in 2-dimensional Materials for Quantum...
3M€
Cerrado
unLiMIt-2D
Unique Light Matter Interactions with Two Dimensional Materi...
1M€
Cerrado
Información proyecto OptoTransport
Duración del proyecto: 24 meses
Fecha Inicio: 2019-03-27
Fecha Fin: 2021-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Van der Waals heterostructures consisting of atomically thin materials, such as graphene and Transition metal dichalcogenides (TMD), have generated a tremendous amount of excitement in physics over the past decade. Embedding these systems in optical cavities leads to new hybrid excitations, known as exciton-polaritons, which govern the properties of the light-matter system. In this action, we aim to harness the unique properties of monolayer materials to explore exotic many-body phenomena that emerge due to the complex interplay of optical and electronic excitations. First, we plan to develop a new prototyping platform to rapidly and deterministically prepare high-quality van der Waals heterostructures, which will allow us to investigate a wider range of parameters than ever before. Our broad physics goal is to understand how electron transport is influenced by the presence of exciton-polaritons in different scenarios. In the first set of experiments, we will investigate polaron physics in a Bose-Fermi mixture formed by electrons and polaritons in a single TMD monolayer from a transport perspective. This will subsequently pave the way to exploring novel approaches to enhance interactions between electrons using exciton-polaritons as a mediator. A potentially ground-breaking consequence of our work will be the light-induced modification of transport properties of the system and in particular the enhancement of the critical temperature for superconductivity. The proposed research will therefore have a significant impact on our understanding of transport phenomena.