Towards nanopore proteomics enhancing cytolysin performance through genetically...
Towards nanopore proteomics enhancing cytolysin performance through genetically encoded noncanonical amino acids
Accurate detection of low-abundance proteins in biological samples obtained from patients or invasive species relies on appropriate handling and fixation techniques. Due to their inherent instability and propensity to denature upo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto nanoEx
Duración del proyecto: 25 meses
Fecha Inicio: 2020-02-24
Fecha Fin: 2022-03-31
Líder del proyecto
KEMIJSKI INSTITUT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
162K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Accurate detection of low-abundance proteins in biological samples obtained from patients or invasive species relies on appropriate handling and fixation techniques. Due to their inherent instability and propensity to denature upon freeze-thaw treatments, important protein markers tend to escape detection. Analogous challenges in RNA sequencing have been mitigated by the use of nanopore technology. European academic research and industry actions led to the creation of the widely used MinION devices that employ nanopore technology to enable DNA and RNA sequencing to be executed on site. Through this application I seek to improve nanopores as biosensors for the detection of proteins that will facilitate immediate protein analysis from clinical or ecological samples. I will use my expertise in genetic code expansion (GCE) techniques to engineer two well-characterized cytolysins with distinct architectures: an α-helical actinoporin and β-barrel containing lysenin. To improve these pores for protein identification and sequencing, the proposed research will advance through four stages: Incorporation of noncanonical amino acid (ncAA) to covalently stabilize smaller pores (1) and modulate the pore’s sensing region (2), directed evolution of residues lining the channel walls (3) and structural characterization of the identified variants (4). This is a multidisciplinary project that combines GCE techniques with advanced biophysical and structural characterization of the evolved nanopores. The host’s expertise in nanopore analysis together with my experience with GCE and directed evolution methods provide an important two-way transfer of knowledge. Action includes a training-through-research essential to advance my future academic career and enhance my employability in the biomedical industry. I anticipate the results of nanoEx project will have a major impact on the progress of nanopore biosensing, increasing the competitiveness of the European industry in protein sequencing.