Toward a new understanding of learning in the brain: dynamic parallel circuit lo...
Toward a new understanding of learning in the brain: dynamic parallel circuit loops for complex learning
The brain’s ability to learn is arguably its most exceptional capacity. Learning in biological brains far surpasses machine learning and requires much less training. How does the brain accomplish this? Why is biological learning s...
The brain’s ability to learn is arguably its most exceptional capacity. Learning in biological brains far surpasses machine learning and requires much less training. How does the brain accomplish this? Why is biological learning still better than the most advanced machine learning algorithms to date? According to the standard model of reward-based learning in the brain, a single error signal is broadcast from the dopamine system and used to update the entire network, implementing a simple form of reinforcement learning. However, the standard model fails to predict several recent experimental findings, leaving open the question of how learning is implemented in the brain. In this project, I propose a new theory of how the brain learns: learning is implemented by multiple dopamine-based learning systems working in parallel circuit loops. These loops relay partial error signals to specific processing areas and permit independent evaluation of the value of different features in the external environment as well as the internal state, enabling learning of complex tasks with multiple relevant features. The loops are engaged dynamically according to the demands of the task, enabling the system to be flexible for learning a wide variety of behaviours of varying complexity. The presence of multiple dynamic parallel learning loops might enable the ability to generalize learning, which is currently the hallmark of biological intelligence. We will use state-of-the art techniques under the framework of our theory to elucidate basic mechanisms underlying the functional circuitry of the learning system (Aim 1), how it operates under different behavioural dynamics (Aim 2), and what algorithm it implements (Aim 3). Success of this project will enable a novel understanding of how the brain learns complex tasks as well as pave the way for the development of new brain-inspired deep reinforcement-learning algorithms.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.